8,852 research outputs found

    Spectral analysis for long-term robotic mapping

    Get PDF
    This paper presents a new approach to mobile robot mapping in long-term scenarios. So far, the environment models used in mobile robotics have been tailored to capture static scenes and dealt with the environment changes by means of ‘memory decay’. While these models keep up with slowly changing environments, their utilization in dynamic, real world environments is difficult. The representation proposed in this paper models the environment’s spatio-temporal dynamics by its frequency spectrum. The spectral representation of the time domain allows to identify, analyse and remember regularly occurring environment processes in a computationally efficient way. Knowledge of the periodicity of the different environment processes constitutes the model predictive capabilities, which are especially useful for long-term mobile robotics scenarios. In the experiments presented, the proposed approach is applied to data collected by a mobile robot patrolling an indoor environment over a period of one week. Three scenarios are investigated, including intruder detection and 4D mapping. The results indicate that the proposed method allows to represent arbitrary timescales with constant (and low) memory requirements, achieving compression rates up to 106 . Moreover, the representation allows for prediction of future environment’s state with ∼ 90% precision

    Long-term topological localisation for service robots in dynamic environments using spectral maps

    Get PDF
    This paper presents a new approach for topological localisation of service robots in dynamic indoor environments. In contrast to typical localisation approaches that rely mainly on static parts of the environment, our approach makes explicit use of information about changes by learning and modelling the spatio-temporal dynamics of the environment where the robot is acting. The proposed spatio-temporal world model is able to predict environmental changes in time, allowing the robot to improve its localisation capabilities during long-term operations in populated environments. To investigate the proposed approach, we have enabled a mobile robot to autonomously patrol a populated environment over a period of one week while building the proposed model representation. We demonstrate that the experience learned during one week is applicable for topological localization even after a hiatus of three months by showing that the localization error rate is significantly lower compared to static environment representations

    Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas

    Get PDF
    A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed

    Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps

    Get PDF
    This paper presents an exploration method that allows mobile robots to build and maintain spatio-temporal models of changing environments. The assumption of a perpetuallychanging world adds a temporal dimension to the exploration problem, making spatio-temporal exploration a never-ending, life-long learning process. We address the problem by application of information-theoretic exploration methods to spatio-temporal models that represent the uncertainty of environment states as probabilistic functions of time. This allows to predict the potential information gain to be obtained by observing a particular area at a given time, and consequently, to decide which locations to visit and the best times to go there. To validate the approach, a mobile robot was deployed continuously over 5 consecutive business days in a busy office environment. The results indicate that the robot’s ability to spot environmental changes i

    Situation Assessment for Mobile Robots

    Get PDF

    FreMEn: Frequency map enhancement for long-term mobile robot autonomy in changing environments

    Get PDF
    We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot's long-term performance in dynamic environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model's predictive capabilities improve mobile robot localisation and navigation in changing environments

    Where's Waldo at time t? Using spatio-temporal models for mobile robot search

    Get PDF
    We present a novel approach to mobile robot search for non-stationary objects in partially known environments. We formulate the search as a path planning problem in an environment where the probability of object occurrences at particular locations is a function of time. We propose to explicitly model the dynamics of the object occurrences by their frequency spectra. Using this spectral model, our path planning algorithm can construct plans that reflect the likelihoods of object locations at the time the search is performed. Three datasets collected over several months containing person and object occurrences in residential and office environments were chosen to evaluate the approach. Several types of spatio-temporal models were created for each of these datasets and the efficiency of the search method was assessed by measuring the time it took to locate a particular object. The results indicate that modeling the dynamics of object occurrences reduces the search time by 25% to 65% compared to maps that neglect these dynamics

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth
    corecore