2,988 research outputs found

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    Autonomous systems for operations in critical environments

    Get PDF
    This paper proposes an environment devoted to simulate the use of autonomous systems in the context of space exploratory missions and operations; this research focuses on supporting engineering of autonomous systems and of their innovative artificial intelligences through interoperable simulation. The proposed approach enables also development of training and educational solutions for use of robots and autonomous systems in space critical environments. The paper addresses different application areas including robotic inventory and warehouse solutions, intelligent space guard systems, drones for supporting extravehicular activities and for managing accidents and health emergencies. The paper investigates the potential of autonomous systems as well as their capability to interoperate with other systems and with humans, especially in critical environments. Finally, the paper presents the existing researches for interoperable simulators devoted to address these challenging topics within Simulation Exploratory Experience initiative

    Foundations of coverage algorithms in autonomic mobile sensor networks

    Get PDF
    Drones are poised to become a prominent focus of advances in the near future as hardware platforms manufactured via mass production become accessible to consumers in higher quantities at lower costs than ever before. As more ways to utilize such devices become more popular, algorithms for directing the activities of mobile sensors must expand in order to automate their work. This work explores algorithms used to direct the behavior of networks of autonomous mobile sensors, and in particular how such networks can operate to achieve coverage of a field using mobility. We focus special attention to the way limited mobility affects the performance (and other factors) of algorithms traditionally applied to area coverage and event detection problems. Strategies for maximizing event detection and minimizing detection delay as mobile sensors with limited mobility are explored in the first part of this work. Next we examine exploratory coverage, a new way of analyzing sensor coverage, concerned more with covering each part of the coverage field once, while minimizing mobility required to achieve this level of 1-coverage. This analysis is contained in the second part of this work. Extending the analysis of mobility, we next strive to explore the novel topic of disabled mobility in mobile sensors, and how algorithms might react to increase effectiveness given that some sensors have lost mobility while retaining other senses. This work analyzes algorithm effectiveness in light of disabled mobility, demonstrates how this particular failure mode impacts common coverage algorithms, and presents ways to adjust algorithms to mitigate performance losses. --Abstract, page iv

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test
    corecore