93 research outputs found

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Sensor System for Rescue Robots

    Get PDF
    A majority of rescue worker fatalities are a result of on-scene responses. Existing technologies help assist the first responders in scenarios of no light, and there even exist robots that can navigate radioactive areas. However, none are able to be both quickly deployable and enter hard to reach or unsafe areas in an emergency event such as an earthquake or storm that damages a structure. In this project we created a sensor platform system to augment existing robotic solutions so that rescue workers can search for people in danger while avoiding preventable injury or death and saving time and resources. Our results showed that we were able to map out a 2D map of the room with updates for robot motion on a display while also showing a live thermal image in front of the system. The system is also capable of taking a digital picture from a triggering event and then displaying it on the computer screen. We discovered that data transfer plays a huge role in making different programs like Arduino and Processing interact with each other. Consequently, this needs to be accounted for when improving our project. In particular our project is wired right now but should deliver data wirelessly to be of any practical use. Furthermore, we dipped our feet into SLAM technologies and if our project were to become autonomous, more research into the algorithms would make this autonomy feasible

    Power Beaconā€™s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensorsā€™ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensorsā€™ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensorsā€™ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBsā€™ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions

    Wireless Sensors for Health Monitoring of Marine Structures and Machinery

    Get PDF
    Remote structural and machinery health monitoring (SMHM) of marine structures such as ships, oil and gas rigs, freight container terminals, and marine energy platforms can ensure their reliability. However, the wired sensors currently used in these applications are difficult and expensive to install and maintain. Wireless Sensor Networks (WSN) can potentially replace them but there are significant capability gaps that currently prevent their long-term deployment in the harsh marine environment and the structurally-complex, compartmentalised, all-metal scenarios with high volume occupancy of piping, ducting and operational machinery represented by marine structures. These gaps are in sensing, processing and communication hardware and firmware capabilities, reduction of power consumption, hardware assembly and packaging for reliability in the marine environment, reliability of wireless connectivity in the complex metal structures, and software for WSN deployment planning in the marine environment. Taken together, these gaps highlight the need for a systems integration methodology for marine SMHM and this is the focus of the research presented in this thesis. The research takes an applied approach by first designing the hardware and firmware for two wireless sensing modules specifically for marine SMHM, one a novel eddy-current-based 3D module for measuring multi-axis metal structural displacement, the second a fully integrated module for monitoring of structure and machinery reliability. The research then addresses module assembly and packaging methods to ensure reliability in the marine environment, the development of an efficient methodology for characterising the reliability of wireless connectivity in complex metal structures, and development of user interface software for planning WSN deployment and for managing the collection of WSN data. These are then individually and collectively characterised and tested for performance and reliability in laboratory, land-based and marine deployments. In addition to the research outcomes in each of these individual aspects, the overall research outcome represents a systems integration methodology that now allows deployment, with a high expectation of reliability of marine SMHM WSNs

    State-of-the-Art Assessment of Smart Charging and Vehicle 2 Grid services

    Get PDF
    Electro-mobility ā€“ especially when coupled smartly with a decarbonised grid and also renewable distributed local energy generation, has an imperative role to play in reducing CO2 emissions and mitigating the effects of climate change. In parallel, the regulatory framework continues to set new and challenging targets for greenhouse gas emissions and urban air pollution. ā€¢ EVs can help to achieve environmental targets because they are beneficial in terms of reduced GHG emissions although the magnitude of emission reduction really depends on the carbon intensity of the national energy mix, zero air pollution, reduced noise, higher energy efficiency and capable of integration with the electric grid, as discussed in Chapter 1. ā€¢ Scenarios to limit global warming have been developed based on the Paris Agreement on Climate Change, and these set the EV deployment targets or ambitions mentioned in Chapter 2. ā€¢ Currently there is a considerable surge in electric cars purchasing with countries such as China, the USA, Norway, The Netherlands, France, the UK and Sweden leading the way with an EV market share over 1%. ā€¢ To enable the achievement of these targets, charging infrastructures need to be deployed in parallel: there are four modes according to IEC 61851, as presented in Chapter 2.1.4. ā€¢ The targets for SEEV4City project are as follow: o Increase energy autonomy in SEEV4-City sites by 25%, as compared to the baseline case. o Reduce greenhouse gas emissions by 150 Tonnes annually and change to zero emission kilometres in the SEEV4-City Operational Pilots. o Avoid grid related investments (100 million Euros in 10 years) by introducing large scale adoption of smart charging and storage services and make existing electrical grids compatible with an increase in electro mobility and local renewable energy production. ā€¢ The afore-mentioned objectives are achieved by applying Smart Charging (SC) and Vehicle to Grid (V2G) technologies within Operational Pilots at different levels: o Household. o Street. o Neighbourhood. o City. ā€¢ SEEV4City aims to develop the concept of 'Vehicle4Energy Services' into a number of sustainable business models to integrate electric vehicles and renewable energy within a Sustainable Urban Mobility and Energy Plan (SUMEP), as introduced in Chapter 1. With this aim in mind, this project fills the gaps left by previous or currently running projects, as reviewed in Chapter 6. ā€¢ The business models will be developed according to the boundaries of the six Operational Pilots, which involve a disparate number of stakeholders which will be considered within them. ā€¢ Within every scale, the relevant project objectives need to be satisfied and a study is made on the Public, Social and Private Economics of Smart Charging and V2G. ā€¢ In order to accomplish this work, a variety of aspects need to be investigated: o Chapter 3 provides details about revenue streams and costs for business models and Economics of Smart Charging and V2G. o Chapter 4 focuses on the definition of Energy Autonomy, the variables and the economy behind it; o Chapter 5 talks about the impacts of EV charging on the grid, how to mitigate them and offers solutions to defer grid investments; o Chapter 7 introduces a number of relevant business models and considers the Economics of Smart Charging and V2G; o Chapter 8 discusses policy frameworks, and gives insight into CO2 emissions and air pollution; o Chapter 9 defines the Data Collection approach that will be interfaced with the models; o Chapter 10 discusses the Energy model and the simulation platforms that may be used for project implementation

    Testbed Design and Implementation For Wireless Power Transfer Using Software Defined Radios

    Get PDF
    The area of wireless power transfer (WPT) dates back more than a century. This capability to transfer power without wires gives also motive for harvesting resources that have not yet been considered, such as the RF signals that cellular networks employ to send information. Only a while ago the research in the WPT ļ¬eld was focused on improving the elements in the power transmission chains separately. However, in recent years, such closed-loop schemes have emerged that have the potential to improve the eļ¬ƒciency of the entire system by adapting key elements in the chain together, such as the transmitted waveform and the rectenna performance. The scope of the thesis aims to contribute to the ultimate objective of merging information and power transfer in a simultaneous wireless information and power transfer/transmission (SWIPT) network. The main objective of this thesis is to design and implement a testbed for research on WPT and SWIPT. A closed-loop system is implemented for future scientiļ¬c experiments for broadcasting a given radio signal and at the same time measuring the total power that an energy receiver will harvest from the transmission. The main element of the testbed is a computer from which master program controlling the transmission, the synchronization, and reading of the harvested voltage. The master program is written in C++ language and is designed to transmit with a USRP and receive voltage readings from the harvesting energy receivers that consist of RF-to-DC converter, ADC and Arduino microcontroller. Results show that the implemented testbed works as planned, and the master program can perform adaptive algorithms. Furthermore, the testbed can be used for experiments for any given waveform meant for communications, WPT, and SWIPT

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: ā€¢ To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. ā€¢ To provide a working basis on ā€œnew generationā€ technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WPā€™s. Objectives & Rationale The objectives of deliverable 2.1 are: ā€¢ To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized

    Analysis and optimal design of micro-energy harvesting systems for wireless sensor nodes

    Get PDF
    Presently, wireless sensor nodes are widely used and the lifetime of the system is becoming the biggest problem with using this technology. As more and more low power products have been used in WSN, energy harvesting technologies, based on their own characteristics, attract more and more attention in this area. But in order to design high energy efficiency, low cost and nearly perpetual lifetime micro energy harvesting system is still challenging. This thesis proposes a new way, by applying three factors of the system, which are the energy generation, the energy consumption and the power management strategy, into a theoretical model, to optimally design a highly efficient micro energy harvesting system in a real environment. In order to achieve this goal, three aspects of contributions, which are theoretically analysis an energy harvesting system, practically enhancing the system efficiency, and real system implementation, have been made. For the theoretically analysis, the generic architecture and the system design procedure have been proposed to guide system design. Based on the proposed system architecture, the theoretical analytical models of solar and thermal energy harvesting systems have been developed to evaluate the performance of the system before it being designed and implemented. Based on the modelā€™s findings, two approaches (MPPT based power conversion circuit and the power management subsystem) have been considered to practically increase the system efficiency. As this research has been funded by the two public projects, two energy harvesting systems (solar and thermal) powered wireless sensor nodes have been developed and implemented in the real environments based on the proposed work, although other energy sources are given passing treatment. The experimental results show that the two systems have been efficiently designed with the optimization of the system parameters by using the simulation model. The further experimental results, tested in the real environments, show that both systems can have nearly perpetual lifetime with high energy efficiency

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    DissertaĆ§Ć£o apresentada na Faculdade de CiĆŖncias e Tecnologia da Universidade Nova de Lisboa para obtenĆ§Ć£o do Grau de Mestre em Engenharia do Ambiente, perfil GestĆ£o e Sistemas AmbientaisThe next computing revolutionā€˜s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information
    • ā€¦
    corecore