499 research outputs found

    Accurate navigation applied to landing maneuvers on mobile platforms for unmanned aerial vehicles

    Get PDF
    Drones are quickly developing worldwide and in Europe in particular. They represent the future of a high percentage of operations that are currently carried out by manned aviation or satellites. Compared to fixed-wing UAVs, rotary wing UAVs have as advantages the hovering, agile maneuvering and vertical take-off and landing capabilities, so that they are currently the most used aerial robotic platforms. In operations from ships and boats, the final approach and the landing maneuver are the phases of the operation that involves a higher risk and where it is required a higher level of precision in the position and velocity estimation, along with a high level of robustness in the operation. In the framework of the EC-SAFEMOBIL and the REAL projects, this thesis is devoted to the development of a guidance and navigation system that allows completing an autonomous mission from the take-off to the landing phase of a rotary-wing UAV (RUAV). More specifically, this thesis is focused on the development of new strategies and algorithms that provide sufficiently accurate motion estimation during the autonomous landing on mobile platforms without using the GNSS constellations. In one hand, for the phases of the flights where it is not required a centimetric accuracy solution, here it is proposed a new navigation approach that extends the current estimation techniques by using the EGNOS integrity information in the sensor fusion filter. This approach allows improving the accuracy of the estimation solution and the safety of the overall system, and also helps the remote pilot to have a more complete awareness of the operation status while flying the UAV In the other hand, for those flight phases where the accuracy is a critical factor in the safety of the operation, this thesis presents a precise navigation system that allows rotary-wing UAVs to approach and land safely on moving platforms, without using GNSS at any stage of the landing maneuver, and with a centimeter-level accuracy and high level of robustness. This system implements a novel concept where the relative position and velocity between the aerial vehicle and the landing platform can be calculated from a radio-beacon system installed in both the UAV and the landing platform or through the angles of a cable that physically connects the UAV and the landing platform. The use of a cable also incorporates several extra benefits, like increasing the precision in the control of the UAV altitude. It also facilitates to center the UAV right on top of the expected landing position and increases the stability of the UAV just after contacting the landing platform. The proposed guidance and navigation systems have been implemented in an unmanned rotorcraft and a large number of tests have been carried out under different conditions for measuring the accuracy and the robustness of the proposed solution. Results showed that the developed system allows landing with centimeter accuracy by using only local sensors and that the UAV is able to follow a mobile landing platform in multiple trajectories at different velocities

    An Active helideck testbed for floating structures based on a Stewart-Gough platform

    Get PDF
    A parallel robot testbed based on Stewart-Gough platform called Active-helideck is designed, developed and tested as a helicopter floating helideck. The objective of this testbed is to show the advantages of helicopters that use an active helideck upon landing on and taking off from ships or from offshore structures. Active-helideck compensates simulated movements of a ship at sea. The main goal of this study is to maintain the robot’s end effector (helideck) in a quasi-static position in accordance to an absolute inertial frame. Compensation is carried out through the coordinate action of its six prismatic actuators in function of an inertial measurement unit. Moreover, the simulation of the sea movement is done by a parallel robot called ship platform with three degrees of freedom. The ship platform is built with a vertical oscillation along the z axis, i.e. heave, and rotates on remaining axes, i.e. roll and pitch. Active helideck is able to compensate simulated movements by considering the ship as an inertial frame as observed in the experiment

    Design and Autonomous Stabilization of a Ballistically Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically launched, autonomously stabilizing multirotor prototype (SQUID, Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision based, active stabilization, confirming the ability of the multirotor to autonomously stabilize after a ballistic launch in a GPS denied environment.Comment: Accepted to 2020 International Conference on Robotics and Automatio

    PRECISE LANDING OF VTOL UAVS USING A TETHER

    Get PDF
    Unmanned Aerial Vehicles (UAVs), also known as drones, are often considered the solution to complex robotics problems. The significant freedom to explore an environment is a major reason why UAVs are a popular choice for automated solutions. UAVs, however, have a very limited flight time due to the low capacity and weight ratio of current batteries. One way to extend the vehicles\u27 flight time is to use a tether to provide power from external batteries, generators on the ground, or another vehicle. Attaching a tether to a vehicle may constrain its navigation but it may also create some opportunities for improvement of some tasks, such as landing. A tethered UAV can still explore an environment, but with some additional limitations: the tether can become wrapped around or bent by an obstacle, stopping the drone from traveling further and requiring backtracking to undo; the tether can fall loose and get caught while dragging on the ground; or the base of the tether could be mobile and the UAV needs to have a way to return to it. Most issues, like those listed above, could be solved with a vision system and various kinds of markers, but this approach could not work in situations of low light, where cameras are no longer effective. In this project, a state machine was developed to land a tethered, vertical take-off and landing (VTOL) UAV using only angles taken from both ends of the tether, the tension in the tether, and the height of the UAV. The main scenarios focused on in this project were normal operation, obstacle interference, loose tether, and a moving base. Normal operation is essentially tether guidance using the tether as a direction back to the base. The obstacle case has to determine the best action for untangling the tether. The loose tether case has to handle the loss of information given by the angle sensors, as the tether direction is no longer available. This case is performed as a last-ditched effort to find the landing pad with only a moderate chance for success. Lastly, the moving base case uses the change in the angles over time to determine the speed needed to reach the base. The software was not the only focus of this project. Two hardware components of this project were a landing platform and a matching landing gear to support the landing process. These two components were designed to aid in the precision of the landed location and to ensure that the UAV was secured in position once landed. The landing platform was designed as a passive funnel-type positioning mechanism with a depression in the center that the landing gear was designed to match. The tension of the tether is used to further lock the UAV into place when in motion. While some of this project remained theoretical, particularly the moving base case, there was flight testing performed for validation of most states of the proposed state machine. The normal operation state was effective at guiding the UAV onto the landing pad. The loose tether case was also able to land within reasonable expectations. This case was not always successful at finding the landing pad. Particular methods of increasing the likelihood of success are discussed in Future Work. The Obstacle Case was also able to be detected, but the response action has yet to be tested in full. The prior testing of velocity following can be used as proof of concept due to its simplicity. In conclusion, this project successfully developed a state machine for precisely landing a tethered UAV with no environmental knowledge or localization. Further development is necessary to improve the likelihood of landing in problematic scenarios and more testing is necessary for the system as a whole. More landing scenarios could also be researched and added as cases to the state machine to increase the robustness of the landing process. However, each current subsystem achieved some level of validation and is to be improved with future developments

    A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

    Full text link
    Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees

    Design and Autonomous Stabilization of a Ballistically-Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free-flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically-launched, autonomously-stabilizing multirotor prototype (SQUID - Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision-based, active stabilization, confirming the multirotor’s ability to autonomously stabilize after a ballistic launch in a GPS-denied environment
    corecore