13,138 research outputs found

    Neural Representations for Sensory-Motor Control, II: Learning a Head-Centered Visuomotor Representation of 3-D Target Position

    Full text link
    A neural network model is described for how an invariant head-centered representation of 3-D target position can be autonomously learned by the brain in real time. Once learned, such a target representation may be used to control both eye and limb movements. The target representation is derived from the positions of both eyes in the head, and the locations which the target activates on the retinas of both eyes. A Vector Associative Map, or YAM, learns the many-to-one transformation from multiple combinations of eye-and-retinal position to invariant 3-D target position. Eye position is derived from outflow movement signals to the eye muscles. Two successive stages of opponent processing convert these corollary discharges into a. head-centered representation that closely approximates the azimuth, elevation, and vergence of the eyes' gaze position with respect to a cyclopean origin located between the eyes. YAM learning combines this cyclopean representation of present gaze position with binocular retinal information about target position into an invariant representation of 3-D target position with respect to the head. YAM learning can use a teaching vector that is externally derived from the positions of the eyes when they foveate the target. A YAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating internal error signals from environmental fluctuations in which these invariant properties are implicit. YAM error signals are computed by Difference Vectors, or DVs, that are zeroed by the YAM learning process. YAMs may be organized into YAM Cascades for learning and performing both sensory-to-spatial maps and spatial-to-motor maps. These multiple uses clarify why DV-type properties are computed by cells in the parietal, frontal, and motor cortices of many mammals. YAMs are modulated by gating signals that express different aspects of the will-to-act. These signals transform a single invariant representation into movements of different speed (GO signal) and size (GRO signal), and thereby enable YAM controllers to match a planned action sequence to variable environmental conditions.National Science Foundation (IRI-87-16960, IRI-90-24877); Office of Naval Research (N00014-92-J-1309

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Vector Associative Maps: Unsupervised Real-time Error-based Learning and Control of Movement Trajectories

    Full text link
    This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.National Science Foundation (IRI-87-16960, IRI-87-6960); Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083

    LIDA: A Working Model of Cognition

    Get PDF
    In this paper we present the LIDA architecture as a working model of cognition. We argue that such working models are broad in scope and address real world problems in comparison to experimentally based models which focus on specific pieces of cognition. While experimentally based models are useful, we need a working model of cognition that integrates what we know from neuroscience, cognitive science and AI. The LIDA architecture provides such a working model. A LIDA based cognitive robot or software agent will be capable of multiple learning mechanisms. With artificial feelings and emotions as primary motivators and learning facilitators, such systems will ‘live’ through a developmental period during which they will learn in multiple ways to act in an effective, human-like manner in complex, dynamic, and unpredictable environments. We discuss the integration of the learning mechanisms into the existing IDA architecture as a working model of cognition

    A Real-Time Unsupervised Neural Network for the Low-Level Control of a Mobile Robot in a Nonstationary Environment

    Full text link
    This article introduces a real-time, unsupervised neural network that learns to control a two-degree-of-freedom mobile robot in a nonstationary environment. The neural controller, which is termed neural NETwork MObile Robot Controller (NETMORC), combines associative learning and Vector Associative Map (YAM) learning to generate transformations between spatial and velocity coordinates. As a result, the controller learns the wheel velocities required to reach a target at an arbitrary distance and angle. The transformations are learned during an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The robot learns the relationship between these velocities and the resulting incremental movements. Aside form being able to reach stationary or moving targets, the NETMORC structure also enables the robot to perform successfully in spite of disturbances in the enviroment, such as wheel slippage, or changes in the robot's plant, including changes in wheel radius, changes in inter-wheel distance, or changes in the internal time step of the system. Finally, the controller is extended to include a module that learns an internal odometric transformation, allowing the robot to reach targets when visual input is sporadic or unreliable.Sloan Fellowship (BR-3122), Air Force Office of Scientific Research (F49620-92-J-0499

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    A perspective on lifelong open-ended learning autonomy for robotics through cognitive architectures

    Get PDF
    [Abstract]: This paper addresses the problem of achieving lifelong open-ended learning autonomy in robotics, and how different cognitive architectures provide functionalities that support it. To this end, we analyze a set of well-known cognitive architectures in the literature considering the different components they address and how they implement them. Among the main functionalities that are taken as relevant for lifelong open-ended learning autonomy are the fact that architectures must contemplate learning, and the availability of contextual memory systems, motivations or attention. Additionally, we try to establish which of them were actually applied to real robot scenarios. It transpires that in their current form, none of them are completely ready to address this challenge, but some of them do provide some indications on the paths to follow in some of the aspects they contemplate. It can be gleaned that for lifelong open-ended learning autonomy, motivational systems that allow finding domain-dependent goals from general internal drives, contextual long-term memory systems that all allow for associative learning and retrieval of knowledge, and robust learning systems would be the main components required. Nevertheless, other components, such as attention mechanisms or representation management systems, would greatly facilitate operation in complex domains.Ministerio de Ciencia e Innovación; PID2021-126220OB-I00Xunta de Galicia; EDC431C-2021/39Consellería de Cultura, Educación, Formación Profesional e Universidades; ED431G 2019/0
    corecore