421 research outputs found

    Autonomous Detection of Safe Landing Areas for an UAV from Monocular Images

    Full text link

    Vision-based Safe Autonomous UAV Docking with Panoramic Sensors

    Full text link
    The remarkable growth of unmanned aerial vehicles (UAVs) has also sparked concerns about safety measures during their missions. To advance towards safer autonomous aerial robots, this work presents a vision-based solution to ensuring safe autonomous UAV landings with minimal infrastructure. During docking maneuvers, UAVs pose a hazard to people in the vicinity. In this paper, we propose the use of a single omnidirectional panoramic camera pointing upwards from a landing pad to detect and estimate the position of people around the landing area. The images are processed in real-time in an embedded computer, which communicates with the onboard computer of approaching UAVs to transition between landing, hovering or emergency landing states. While landing, the ground camera also aids in finding an optimal position, which can be required in case of low-battery or when hovering is no longer possible. We use a YOLOv7-based object detection model and a XGBooxt model for localizing nearby people, and the open-source ROS and PX4 frameworks for communication, interfacing, and control of the UAV. We present both simulation and real-world indoor experimental results to show the efficiency of our methods

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Dynamic Open Vocabulary Enhanced Safe-landing with Intelligence (DOVESEI)

    Full text link
    This work targets what we consider to be the foundational step for urban airborne robots, a safe landing. Our attention is directed toward what we deem the most crucial aspect of the safe landing perception stack: segmentation. We present a streamlined reactive UAV system that employs visual servoing by harnessing the capabilities of open vocabulary image segmentation. This approach can adapt to various scenarios with minimal adjustments, bypassing the necessity for extensive data accumulation for refining internal models, thanks to its open vocabulary methodology. Given the limitations imposed by local authorities, our primary focus centers on operations originating from altitudes of 100 meters. This choice is deliberate, as numerous preceding works have dealt with altitudes up to 30 meters, aligning with the capabilities of small stereo cameras. Consequently, we leave the remaining 20m to be navigated using conventional 3D path planning methods. Utilizing monocular cameras and image segmentation, our findings demonstrate the system's capability to successfully execute landing maneuvers at altitudes as low as 20 meters. However, this approach is vulnerable to intermittent and occasionally abrupt fluctuations in the segmentation between frames in a video stream. To address this challenge, we enhance the image segmentation output by introducing what we call a dynamic focus: a masking mechanism that self adjusts according to the current landing stage. This dynamic focus guides the control system to avoid regions beyond the drone's safety radius projected onto the ground, thus mitigating the problems with fluctuations. Through the implementation of this supplementary layer, our experiments have reached improvements in the landing success rate of almost tenfold when compared to global segmentation. All the source code is open source and available online (github.com/MISTLab/DOVESEI).Comment: Submitted to IROS 2023 The Last-Mile Robotics Worksho

    Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance

    Get PDF
    The inspection and maintenance tasks of electrical installations are very demanding. Nowadays, insulator cleaning is carried out manually by operators using scaffolds, ropes, or even helicopters. However, these operations involve potential risks for humans and the electrical structure. The use of Unmanned Aerial Vehicles (UAV) to reduce the risk of these tasks is rising. This paper presents an UAV to autonomously clean insulators on power lines. First, an insulator detection and tracking algorithm has been implemented to control the UAV in operation. Second, a cleaning tool has been designed consisting of a pump, a tank, and an arm to direct the flow of cleaning liquid. Third, a vision system has been developed that is capable of detecting soiled areas using a semantic segmentation neuronal network, calculating the trajectory for cleaning in the image plane, and generating arm trajectories to efficiently clean the insulator. Fourth, an autonomous system has been developed to land on a charging pad to charge the batteries and potentially fill the tank with cleaning liquid. Finally, the autonomous system has been validated in a controlled outdoor environment.Ministerio de Ciencia e Innovación (CDTI) AERIAL-CORE H2020 ICT-10-2019-2020FEDER INTERCONECT
    corecore