5 research outputs found

    Autonomous Coordinator Selection in Beamformed 60GHz Wireless Networks

    Get PDF
    In 60 GHz wireless networks, autonomous coordinator selection is required to find a device to coordinate the transmissions among devices. In order to minimize the power consumption for the coordinator, we utilize the direction information extracted from beamformed transmissions in finding the coordinator automatically. The problem is formulated as a K-center problem, which is a NP-hard problem in general. Analysis is carried out to find optimal solutions in certain tractable topologies. Numerical algorithms and simulation results are further presented for random two dimensional topologies

    What Will the Future ofUAV Cellular Communications Be?A Flight from 5G to 6G

    Get PDF
    What will the future of UAV cellular communicationsbe?In this tutorial article, we address such a compelling yetdifficult question by embarking on a journey from 5G to 6Gand expounding a large number of case studies supported byoriginal results. We start by overviewing the status quo on UAVcommunications from an industrial standpoint, providing freshupdates from the 3GPP and detailing new 5G NR features insupport of aerial devices. We then dissect the potential andthe limitations of such features. In particular, we demonstratehow sub-6 GHz massive MIMO can successfully tackle cellselection and interference challenges, we showcase encouragingmmWave coverage evaluations in both urban and suburban/ruralsettings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peekat next-generation UAV communications, listing some of the usecases envisioned for the 2030s. We identify the most promising6G enablers for UAV communication, those expected to takethe performance and reliability to the next level. For each ofthese disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligentsurfaces, and THz communications), we gauge the prospectivebenefits for UAVs and discuss the main technological hurdles thatstand in the way. All along, we distil our numerous findings intoessential takeaways, and we identify key open problems worthyof further study

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology
    corecore