560 research outputs found

    Technical Challenges Associated with In-Air Wingtip Docking of Aircraft in Forward Flight

    Get PDF
    Autonomous in-air wingtip docking of aircraft offers significant opportunity for system level performance gains for numerous aircraft applications. Several of the technical challenges facing wingtip docking of fixed-wing aircraft are addressed in this paper, including: close proximity aerodynamic coupling; mechanisms and operations for robust docking; and relative state estimation methods. A simulation framework considering the aerodynamics, rigid-body dynamics, and vehicle controls is developed and used to perform docking sensitivity studies for a system of two 5.5% scale NASA Generic Transport Model aircraft. Additionally, proof of- concept testing of a candidate docking mechanism designed to move the primary wingtip vortex inboard suggests the viability of such an approach for achieving robust docking

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    Get PDF
    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV\u27s) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor

    Control Design and Performance Analysis for Autonomous Formation Flight Experiments

    Get PDF
    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV’s) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor

    Guidance, Navigation and Control for UAV Close Formation Flight and Airborne Docking

    Get PDF
    Unmanned aerial vehicle (UAV) capability is currently limited by the amount of energy that can be stored onboard or the small amount that can be gathered from the environment. This has historically lead to large, expensive vehicles with considerable fuel capacity. Airborne docking, for aerial refueling, is a viable solution that has been proven through decades of implementation with manned aircraft, but had not been successfully tested or demonstrated with UAVs. The prohibitive challenge is the highly accurate and reliable relative positioning performance that is required to dock with a small target, in the air, amidst external disturbances. GNSS-based navigation systems are well suited for reliable absolute positioning, but fall short for accurate relative positioning. Direct, relative sensor measurements are precise, but can be unreliable in dynamic environments. This work proposes an experimentally verified guidance, navigation and control solution that enables a UAV to autonomously rendezvous and dock with a drogue that is being towed by another autonomous UAV. A nonlinear estimation framework uses precise air-to-air visual observations to correct onboard sensor measurements and produce an accurate relative state estimate. The state of the drogue is estimated using known geometric and inertial characteristics and air-to-air observations. Setpoint augmentation algorithms compensate for leader turn dynamics during formation flight, and drogue physical constraints during docking. Vision-aided close formation flight has been demonstrated over extended periods; as close as 4 m; in wind speeds in excess of 25 km/h; and at altitudes as low as 15 m. Docking flight tests achieved numerous airborne connections over multiple flights, including five successful docking manoeuvres in seven minutes of a single flight. To the best of our knowledge, these are the closest formation flights performed outdoors and the first UAV airborne docking

    Optical Tracking for Relative Positioning in Automated Aerial Refueling

    Get PDF
    An algorithm is designed to extract features from video of an air refueling tanker for use in determining the precise relative position of a receiver aircraft. The algorithm is based on receiving a known estimate of the tanker aircraft\u27s position and attitude. The algorithm then uses a known feature model of the tanker to predict the location of those features on a video frame. A corner detector is used to extract features from the video. The measured corners are then associated with known features and tracked from frame to frame. For each frame, the associated features are used to calculate three dimensional pointing vectors to the features of the tanker. These vectors are passed to a navigation algorithm which uses extended Kalman filters, as well as data-linked INS data to solve for the relative position of the tanker. The algorithms were tested using data from a flight test accomplished by the USAF Test Pilot School using a C-12C as a simulated tanker and a Learjet LJ-24 as the simulated receiver. The system was able to provide at least a dozen useful measurements per frame, with and without projection error

    Autonomous Close Formation Flight of Small UAVs Using Vision-Based Localization

    Get PDF
    As Unmanned Aerial Vehicles (UAVs) are integrated into the national airspace to comply with the 2012 Federal Aviation Administration Reauthorization Act, new civilian uses for robotic aircraft will come about in addition to the more obvious military applications. One particular area of interest for UAV development is the autonomous cooperative control of multiple UAVs. In this thesis, a decentralized leader-follower control strategy is designed, implemented, and tested from the follower’s perspective using vision-based localization. The tasks of localization and control were carried out with separate processing hardware dedicated to each task. First, software was written to estimate the relative state of a lead UAV in real-time from video captured by a camera on-board the following UAV. The software, written using OpenCV computer vision libraries and executed on an embedded single-board computer, uses the Efficient Perspective-n-Point algorithm to compute the 3-D pose from a set of 2-D image points. High-intensity, red, light emitting diodes (LEDs) were affixed to specific locations on the lead aircraft’s airframe to simplify the task if extracting the 2-D image points from video. Next, the following vehicle was controlled by modifying a commercially available, open source, waypoint-guided autopilot to navigate using the relative state vector provided by the vision software. A custom Hardware-In-Loop (HIL) simulation station was set up and used to derive the required localization update rate for various flight patterns and levels of atmospheric turbulence. HIL simulation showed that it should be possible to maintain formation, with a vehicle separation of 50 ± 6 feet and localization estimates updated at 10 Hz, for a range of flight conditions. Finally, the system was implemented into low-cost remote controlled aircraft and flight tested to demonstrate formation convergence to 65.5 ± 15 feet of separation

    Development of Cursor-on-Target Control for Semi-Autonomous Unmanned Aircraft Systems

    Get PDF
    The research presented in this thesis focuses on developing, demonstrating, and evaluating the concept of a Cursor-on-Target control system for semi-autonomous unmanned aircraft systems. The Department of Defense has mapped out a strategy in which unmanned aircraft systems will increasingly replace piloted aircraft. During most phases of flight autonomous unmanned aircraft control reduces operator workload, however, real-time information exchange often requires an operator to relay decision changes to the unmanned aircraft. The goal of this research is to develop a preliminary Cursor-on-Target control system to enable the operator to guide the unmanned aircraft with minimal workload during high task phases of flight and then evaluate the operator\u27s ability to conduct the mission using that control system. For this research, the problem of Cursor-on-Target control design has multiple components. Initially, a Cursor-on-Target controller is developed in Simulink. Then, this controller is integrated into the Aviator Visual Design Simulator to develop an operator-in-the-loop test platform. Finally, a ground target is simulated and tracked to validate the Cursor-on-Target controller. The Cursor-on-Target control system is then evaluated using a proposed operator rating scale

    Avionics and control system development for mid-air rendezvous of two unmanned aerial vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (p. 177-181).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.A flight control system was developed to achieve mid-air rendezvous of two unmanned aerial vehicles (UAVs) as a part of the Parent Child Unmanned Aerial Vehicle (PCUAV) project at MIT and the Draper Laboratory. A lateral guidance logic was developed for tightly tracking a desired flight path. The guidance logic is derived from geometric and kinematic properties, and has been demonstrated to work better than the conventional aircraft guidance method in waypoint navigation. A simple, low-order attitude estimation was developed that combines aircraft kinematics, GPS and low-quality rate gyros. It is demonstrated in simulation that the performance of the proposed method is as good as other advanced complex methods when the aircraft bank angle is relative small(<40 degrees). The end-game control strategy for the final phase of the rendezvous was also developed, using proportional navigation guidance in conjunction with an optical sensor. The associated miss distance was analyzed with regard to the wind effect and initial conditions. A series of flight tests was performed using two UAVs which were built as a part of the project. It was demonstrated that each individual aircraft can follow a desired flight path within a position accuracy of 2 meters (based on sensor data) while also tracking the air speed command to within 1 m/s. At the time of this thesis writing, it has been demonstrated that the developed control system can bring the two UAVs from any arbitrary initial positions into a configuration of a tight formation flight, where one vehicle trails the other with a commanded separation of 12 meters while maintaining the relative position error within 2 meters in both horizontal and vertical directions for 85% of the flight time.by Sanghyuk Park.Ph.D
    • …
    corecore