4,140 research outputs found

    NEURON: Enabling Autonomicity in Wireless Sensor Networks

    Get PDF
    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes

    Bioans: bio-inspired ambient intelligence protocol for wireless sensor networks

    Get PDF
    This paper describes the BioANS (Bio-inspired Autonomic Networked Services) protocol that uses a novel utility-based service selection mechanism to drive autonomicity in sensor networks. Due to the increase in complexity of sensor network applications, self-configuration abilities, in terms of service discovery and automatic negotiation, have become core requirements. Further, as such systems are highly dynamic due to mobility and/or unreliability; runtime self-optimisation and self-healing is required. However the mechanism to implement this must be lightweight due to the sensor nodes being low in resources, and scalable as some applications can require thousands of nodes. BioANS incorporates some characteristics of natural emergent systems and these contribute to its overall stability whilst it remains simple and efficient. We show that not only does the BioANS protocol implement autonomicity in allowing a dynamic network of sensors to continue to function under demanding circumstances, but that the overheads incurred are reasonable. Moreover, state-flapping between requester and provider, message loss and randomness are not only tolerated but utilised to advantage in the new protocol

    Optimizing the beacon exchange rate for proactive autonomic configuration in ubiquitous MANETs

    Get PDF
    Proactive self-configuration is indispensable for MANETs like ubiquitous sensor networks (USNs), as component devices of the network are usually exposed to natural or man-made disasters due to the hostile deployment and ad hoc nature of the USNs. Network state beacons (NSBs) are exchanged among the key nodes of the network for crucial and effective monitoring of the network for steady state operation. The rate of beacon exchange (F/sub E/) and its contents, define the time and nature of the proactive action. Therefore it is very important to optimize these parameters to tune the functional response of the USN. This paper presents a comprehensive model for monitoring and proactively reconfiguring the network by optimizing the F/sub E/. The results confirm the improved throughput while maintaining QoS over longer periods of network operation

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors
    • …
    corecore