66 research outputs found

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    A control and management architecture supporting autonomic NFV services

    Get PDF
    The proposed control, orchestration and management (COM) architecture is presented from a high-level point of view; it enables the dynamic provisioning of services such as network data connectivity or generic network slicing instances based on virtual network functions (VNF). The COM is based on Software Defined Networking (SDN) principles and is hierarchical, with a dedicated controller per technology domain. Along with the SDN control plane for the provisioning of connectivity, an ETSI NFV management and orchestration system is responsible for the instantiation of Network Services, understood in this context as interconnected VNFs. A key, novel component of the COM architecture is the monitoring and data analytics (MDA) system, able to collect monitoring data from the network, datacenters and applications which outputs can be used to proactively reconfigure resources thus adapting to future conditions, like load or degradations. To illustrate the COM architecture, a use case of a Content Delivery Network service taking advantage of the MDA ability to collect and deliver monitoring data is experimentally demonstrated.Peer ReviewedPostprint (author's final draft

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    Distributed collaborative knowledge management for optical network

    Get PDF
    Network automation has been long time envisioned. In fact, the Telecommunications Management Network (TMN), defined by the International Telecommunication Union (ITU), is a hierarchy of management layers (network element, network, service, and business management), where high-level operational goals propagate from upper to lower layers. The network management architecture has evolved with the development of the Software Defined Networking (SDN) concept that brings programmability to simplify configuration (it breaks down high-level service abstraction into lower-level device abstractions), orchestrates operation, and automatically reacts to changes or events. Besides, the development and deployment of solutions based on Artificial Intelligence (AI) and Machine Learning (ML) for making decisions (control loop) based on the collected monitoring data enables network automation, which targets at reducing operational costs. AI/ML approaches usually require large datasets for training purposes, which are difficult to obtain. The lack of data can be compensated with a collective self-learning approach. In this thesis, we go beyond the aforementioned traditional control loop to achieve an efficient knowledge management (KM) process that enhances network intelligence while bringing down complexity. In this PhD thesis, we propose a general architecture to support KM process based on four main pillars, which enable creating, sharing, assimilating and using knowledge. Next, two alternative strategies based on model inaccuracies and combining model are proposed. To highlight the capacity of KM to adapt to different applications, two use cases are considered to implement KM in a purely centralized and distributed optical network architecture. Along with them, various policies are considered for evaluating KM in data- and model- based strategies. The results target to minimize the amount of data that need to be shared and reduce the convergence error. We apply KM to multilayer networks and propose the PILOT methodology for modeling connectivity services in a sandbox domain. PILOT uses active probes deployed in Central Offices (COs) to obtain real measurements that are used to tune a simulation scenario reproducing the real deployment with high accuracy. A simulator is eventually used to generate large amounts of realistic synthetic data for ML training and validation. We apply KM process also to a more complex network system that consists of several domains, where intra-domain controllers assist a broker plane in estimating accurate inter-domain delay. In addition, the broker identifies and corrects intra-domain model inaccuracies, as well as it computes an accurate compound model. Such models can be used for quality of service (QoS) and accurate end-to-end delay estimations. Finally, we investigate the application on KM in the context of Intent-based Networking (IBN). Knowledge in terms of traffic model and/or traffic perturbation is transferred among agents in a hierarchical architecture. This architecture can support autonomous network operation, like capacity management.La automatización de la red se ha concebido desde hace mucho tiempo. De hecho, la red de gestión de telecomunicaciones (TMN), definida por la Unión Internacional de Telecomunicaciones (ITU), es una jerarquía de capas de gestión (elemento de red, red, servicio y gestión de negocio), donde los objetivos operativos de alto nivel se propagan desde las capas superiores a las inferiores. La arquitectura de gestión de red ha evolucionado con el desarrollo del concepto de redes definidas por software (SDN) que brinda capacidad de programación para simplificar la configuración (descompone la abstracción de servicios de alto nivel en abstracciones de dispositivos de nivel inferior), organiza la operación y reacciona automáticamente a los cambios o eventos. Además, el desarrollo y despliegue de soluciones basadas en inteligencia artificial (IA) y aprendizaje automático (ML) para la toma de decisiones (bucle de control) en base a los datos de monitorización recopilados permite la automatización de la red, que tiene como objetivo reducir costes operativos. AI/ML generalmente requieren un gran conjunto de datos para entrenamiento, los cuales son difíciles de obtener. La falta de datos se puede compensar con un enfoque de autoaprendizaje colectivo. En esta tesis, vamos más allá del bucle de control tradicional antes mencionado para lograr un proceso eficiente de gestión del conocimiento (KM) que mejora la inteligencia de la red al tiempo que reduce la complejidad. En esta tesis doctoral, proponemos una arquitectura general para apoyar el proceso de KM basada en cuatro pilares principales que permiten crear, compartir, asimilar y utilizar el conocimiento. A continuación, se proponen dos estrategias alternativas basadas en inexactitudes del modelo y modelo de combinación. Para resaltar la capacidad de KM para adaptarse a diferentes aplicaciones, se consideran dos casos de uso para implementar KM en una arquitectura de red óptica puramente centralizada y distribuida. Junto a ellos, se consideran diversas políticas para evaluar KM en estrategias basadas en datos y modelos. Los resultados apuntan a minimizar la cantidad de datos que deben compartirse y reducir el error de convergencia. Aplicamos KM a redes multicapa y proponemos la metodología PILOT para modelar servicios de conectividad en un entorno aislado. PILOT utiliza sondas activas desplegadas en centrales de telecomunicación (CO) para obtener medidas reales que se utilizan para ajustar un escenario de simulación que reproducen un despliegue real con alta precisión. Un simulador se utiliza finalmente para generar grandes cantidades de datos sintéticos realistas para el entrenamiento y la validación de ML. Aplicamos el proceso de KM también a un sistema de red más complejo que consta de varios dominios, donde los controladores intra-dominio ayudan a un plano de bróker a estimar el retardo entre dominios de forma precisa. Además, el bróker identifica y corrige las inexactitudes de los modelos intra-dominio, así como también calcula un modelo compuesto preciso. Estos modelos se pueden utilizar para estimar la calidad de servicio (QoS) y el retardo extremo a extremo de forma precisa. Finalmente, investigamos la aplicación en KM en el contexto de red basada en intención (IBN). El conocimiento en términos de modelo de tráfico y/o perturbación del tráfico se transfiere entre agentes en una arquitectura jerárquica. Esta arquitectura puede soportar el funcionamiento autónomo de la red, como la gestión de la capacidad.Postprint (published version

    Results and achievements of the ALLIANCE Project: New network solutions for 5G and beyond

    Get PDF
    Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper overviews the main achievements obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged 5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned upcoming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G (B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access, metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI) techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of the ALLIANCE architecture includes two novel elements, namely the monitoring element providing network and user data in real time to the KDN, and the blockchain-based trust element in charge of exchanging reliable and confident information with external domains.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under contract FEDER TEC2017-90034-C2 (ALLIANCE project) and by the Generalitat de Catalunya under contract 2017SGR-1037 and 2017SGR-605.Peer ReviewedPostprint (published version

    Adaptive Telemetry for Software-Defined Mobile Networks

    Get PDF
    The forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support the rapid programming of heterogeneous data planes. Software Defined Networking (SDN) has emerged as a basic toolset for operators to manage their infrastructure, as it opens up the possibility of running a multitude of intelligent and advanced applications for network optimization purposes in a centralized network controller. However, the very basic nature that makes possible this efficient management and operation in a flexible way-the logical centralization-poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operat-ing a network, centralized intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. This article first analyzes the monitoring issues in current SDN solutions and then proposes a telemetry frame-work for software defined mobile networks capable of adapting to the various 5G services. Finally, it presents an experimental validation that shows the benefits of the proposed solution at alleviating the load on the control and data planes, improv-ing the reactiveness to network events, and providing better accuracy for network measurements.This work has been partially funded by the H2020 Framework Programme Europe/Taiwan joint action 5G-DIVE Project (Grant No. 859881), by the H2020 Framework Programme EU 5G-Transformer Project (Grant No. 761586), and by the H2020 Framework Programme EU 5Growth Project (Grant No. 856709)

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore