274 research outputs found

    Extensible Signaling Framework for Decentralized Network Management Applications

    Get PDF
    The management of network infrastructures has become increasingly complex over time, which is mainly attributed to the introduction of new functionality to support emerging services and applications. To address this important issue, research efforts in the last few years focused on developing Software-Defined Networking solutions. While initial work proposed centralized architectures, their scalability limitations have led researchers to investigate a distributed control plane, with controller placement algorithms and mechanisms for building a logically centralized network view, being examples of challenges addressed. A critical issue that has not been adequately addressed concerns the communication between distributed decision-making entities to ensure configuration consistency. To this end, this paper proposes a signaling framework that can allow the exchange of information in distributed management and control scenarios. The benefits of the proposed framework are illustrated through a realistic network resource management use case. Based on simulation, we demonstrate the flexibility and extensibility of our solution in meeting the requirements of distributed decision-making processes

    Towards flexible, scalable and autonomic virtual tenant slices

    Full text link

    Fog computing : enabling the management and orchestration of smart city applications in 5G networks

    Get PDF
    Fog computing extends the cloud computing paradigm by placing resources close to the edges of the network to deal with the upcoming growth of connected devices. Smart city applications, such as health monitoring and predictive maintenance, will introduce a new set of stringent requirements, such as low latency, since resources can be requested on-demand simultaneously by multiple devices at different locations. It is then necessary to adapt existing network technologies to future needs and design new architectural concepts to help meet these strict requirements. This article proposes a fog computing framework enabling autonomous management and orchestration functionalities in 5G-enabled smart cities. Our approach follows the guidelines of the European Telecommunications Standards Institute (ETSI) NFV MANO architecture extending it with additional software components. The contribution of our work is its fully-integrated fog node management system alongside the foreseen application layer Peer-to-Peer (P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol for the exchange of application service provisioning information between fog nodes. Evaluations of an anomaly detection use case based on an air monitoring application are presented. Our results show that the proposed framework achieves a substantial reduction in network bandwidth usage and in latency when compared to centralized cloud solutions

    The AutoI approach for the orchestration of autonomic networks

    No full text
    Existing services require assurable end to-end quality of service, security and reliability constraints. Therefore, the networks involved in the transport of the data must cooperate to satisfy those constraints. In a next generation Internet, each of those networks may be managed by different entities. Fur thermore, their policies and service level agreements (SLAs) will differ, as well as the autonomic management systems controlling them. In this context, we in the Autonomic Internet (AutoI) consortium propose the Orchestration Plane (OP), which promotes the interaction among different Autonomic Management Systems (AMSs). The OP mediates the communication and negotiation amongAMSs, ensuring that their SLAs and policies meet the requirement needed for the provisioning of the services. It also simplifies the federation of domains and the distribution of new services in virtualised network environments.Peer ReviewedPostprint (author’s final draft
    • …
    corecore