354 research outputs found

    Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study.

    Get PDF
    Buildings consume a considerable amount of electrical energy, the Heating, Ventilation, and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts. Scientific literature shows that Soft Computing techniques require fewer computing resources but at the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive results, although further research will be necessary to resolve new challenging multi-objective optimization problems. This article compares the performance of selected genetic and swarmintelligence- based algorithms with the aim of discerning their capabilities in the field of smart buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are compared in hypervolume, generational distance, Δ-indicator, and execution time. Real data from the Building Management System of Teatro Real de Madrid have been used to train a data model used for the multiple objective calculations. The novelty brought by the analysis of the different proposed dynamic optimization algorithms in the transient time of an HVAC system also includes the addition, to the conventional optimization objectives of comfort and energy efficiency, of the coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the equipment lifecycle and minimize the overshooting effect when passing to the steady state. The optimization works impressively well in energy savings, although the results must be balanced with other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive visualization of the performance of the two families of algorithms in a real multi-HVAC system increases the novelty of this proposal.post-print888 K

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thĂšse vise Ă  Ă©tendre l’utilisation de l'Internet des objets (IdO) en facilitant le dĂ©veloppement d’applications par des personnes non experts en dĂ©veloppement logiciel. La thĂšse propose une nouvelle approche pour augmenter la sĂ©mantique des applications d’IdO et l’implication des experts du domaine dans le dĂ©veloppement d’applications sensibles au contexte. Notre approche permet de gĂ©rer le contexte changeant de l’environnement et de gĂ©nĂ©rer des applications qui s’exĂ©cutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en Ɠuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le dĂ©veloppement d’applications IdO. AmI-DEU intĂšgre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de reprĂ©senter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la dĂ©finition d’applications IoT avec une intention d’activitĂ© autodĂ©crite qui contient les connaissances requises pour rĂ©aliser l’activitĂ©. Ensuite, le cadriciel gĂ©nĂšre Intention as a Context (IaaC), qui comprend une intention d’activitĂ© autodĂ©crite avec des connaissances colligĂ©es Ă  Ă©valuer pour une meilleure adaptation dans des environnements intelligents. La sĂ©mantique de l’AmI-DEU est basĂ©e sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des rĂšgles et l'appariement sĂ©mantique pour produire des applications IdO autonomes capables de s’exĂ©cuter en ContextAA. AmI- DEU inclut Ă©galement un outil de dĂ©veloppement visuel pour le dĂ©veloppement et le dĂ©ploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la mĂ©taphore du flux avec des aides visuelles pour simplifier le dĂ©veloppement d'applications en permettant des dĂ©finitions de rĂšgles Ă©tape par Ă©tape. Dans le cadre de l’expĂ©rimentation, AmI-DEU comprend un banc d’essai pour le dĂ©veloppement d’applications IdO. Les rĂ©sultats expĂ©rimentaux montrent une optimisation sĂ©mantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour amĂ©liorer le bienĂȘtre et la qualitĂ© de vie des personnes. Cette thĂšse se termine par des orientations de recherche que le cadriciel AmI-DEU dĂ©voile pour rĂ©aliser des environnements intelligents omniprĂ©sents fournissant des adaptations appropriĂ©es pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A comparative node evaluation model for highly heterogeneous massive‐scale Internet of Things‐Mist networks

    Get PDF
    Internet of Things (IoT) is a new technology that is driving the connection of billions of devices around the world. Because these devices are often resource‐constrained and very heterogeneous, this presents unique challenges. To address some of these challenges, new paradigms of Edge and Fog are emerging to bring computational resources of the IoT networks from remote devices like cloud closer to the end‐devices. Mist computing is a new paradigm that attempts to make use of the more resource‐rich nodes that are closer than Edge nodes to end‐users. Since these nodes might have enough resources to host services, execute tasks or even run containers, the utilization of network resources might be improved, and delay reduced by utilizing these nodes. The nodes must, therefore, be assessed to determine which nodes should offer resources to other nodes based on their situation. In this article, a new comparative assessment model for ranking Mist nodes in highly heterogeneous massive‐scale IoT networks in order to discover nodes that can offer their resources is proposed. The Mist nodes are evaluated based on parameters like resources, connections, applications, and environmental parameters to heuristically compare the neighbors with a novel learning‐to‐rank method to predict a suitability score for each node. The most suitable neighbor is then selected based on the score, with load balancing accomplished by a second chance method. When evaluating the performance, the results show that the proposed method succeeds in identifying resource‐rich nodes, while considering the selection of other nodes.publishedVersio

    Preface

    Get PDF
    DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018.DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018

    A Cognitive IoE (Internet of Everything) Approach to Ambient-Intelligent Smart Space

    Get PDF
    At present, the United Nations figures claim that the current world population would rise from 7.6 billion to 8.5 billion in 2030 and 9.7 billion in 2050. Therefore by the 2050, 65 percent of world’s population would be living in urban mega-cities and each megacity would be accommodating around 10 million inhabitants. Such massive urbanization of growing population would be known as 21st century’s ’Urban Age’. On the other side, by 2020 the growing population of elderly people above 65 years old would be increasing by 25 percent in EU countries and by 30 percent in other developing nations including Asia and North America. As a result, the growth of massive population and elderly inhabitants in urban cities would require an assisted living environment for independent and comfortable living experiences. As can be expected, a persuasive demand of assisted living environment would be vital to the humankind. The goal of an assisted living environment is to support the aging population and inhabitants to live independently in their own home and communities with the support of trained services and personal digital assistants. Therefore, the continuous growing demand of assisted living environment targets to improve the inhabitants comfort level and efficiency to do their ADL (Activity Daily Living) routine tasks by enabling the cooperation among various IoT smart objects and sensors which will understand the environmental surroundings and the inhabitant’s contextual needs in a proactive manner.In this work, a Cognitive IoE (Internet of Everything) framework with ambient intelligence capability is proposed to observe the inhabitant activities with heterogeneous IoT network objects and sensors in a time series manner to perceive the inhabitant intentions and situations in the environment. The predictive regression model forecasts the inhabitant’s activity patterns with regressive machine learning algorithms. The interconnected network objects (sensors and actuators) behave as agents to learn, think and adapt to contextual situations in the dynamic environment with no or minimum human intervention. Therefore, the first research challenge is to recognize the inhabitant’s intentional-situation in the environment, and it is achieved by the Ambient Cognition Model(ACM). The ACM not only performs IoT data-fusion but also applies a statistical model for threshold and weight scheme to extract contextual information in a more systematic manner. The second research challenge of automating the predictive regression model to forecast the time series activity patterns of inhabitants is addressed within the Ambient-Expert Model(AEM). The hidden activity state patterns are identified, trained and tested with the supervised machine learning method of Hidden Markov Model, Recurrent-Neural Network, and Naive Bayes classifier. In addition, a recursive training mechanism of DATAWELL is integrated with the architecture to train(re-train) the model over new datasets and perform predictive analysis in a proactive manner.Furthermore, the unified framework CAiSH (Cognitive Ambient Intelligent Smart Home), built upon the integration of ACMand AEM architectures to a provide an intelligent IoT framework for the ambient intelligence smart home environment. The trained model uses maximum likelihood posterior probabilities to forecast the inhabitant’s intentional activity states. The CAiSH works as a proactive digital assistant to the inhabitant provide a development platform for autonomous and enhanced assisted living services in the cognitive IoE environment. The research has been carried out on time-series data sets, deploying IoT lab to generate and collect time series data for the training and testing purpose and providing hands-on research experience on IoT prototype deployment. Overall, 5499 datasets of 30 SA (Spot-Activities) and 9 IA (Intention- Activities) data sets have been engaged for the training and evaluation. The result outputs are evaluated with MAE (Mean-Square Error), MAPE (Mean Absolute Percentage Error) and MAE (Mean Absolute Error) metrics for the prediction accuracy measures
    • 

    corecore