84 research outputs found

    Intelligentes Führungskonzept für ein Autonomes Unterwasserfahrzeug in Sondersituationen

    Get PDF
    AbstractThis thesis introduces a complete and new concept for the control of an AUV in special situations. Such a special situation occurs when an Object detected during the mission is tangential to the proposed route; in such a situation the possible actions are identification or evasion of the object. The design of the concept had to take into account a number of practical requirements (Safety, Robustness, Computation time and Optimality of the solution), for the processes and algorithms; these requirements had to be met within the hardware and software specifications and operational constraints of the AUV system. Such specifications include non-holonome, delayed motion behaviour of the AUV, the available environmental sensors, the vehicle’s software architecture, development and communication software. The operational constraints of a AUV may be characterised by manoeuvres in three dimensional space in adverse conditions with strong water currents, bad (sonar) visibility and high water pressure; taking into account safety distances to the seafloor and geographical obstacles, manmade constructions and debris.The concept developed is of modular construction and includes components for collision detection, goal generation, collision avoidance, vehicle guidance for identification tasks and general vehicle control. A two phase concept was used for the collision detection; this allows a rapid collision verification through the use of simple collision tests which leads to a pre-selection of possible collision candidates. The collision avoidance system, developed during the course of the research, has a hybrid structure, whereby reactive (Reactive Control) and planning (Route planning) components work in parallel. The reactive control takes over the vehicle guidance to avoid the collision, concurrently the route planning generates a route which will avoid the obstacle and return the vehicle back on to its original path. Once a route has been calculated the planning function takes over from the reactive control to execute the planned route.The new reactive control component contains a newly developed and original process for construction of gradient lines that combines the advantages of Harmonic Dipole Potentials process with the requirements of a path-optimal control which takes into account the non-holonome, delayed motion behaviour of the vehicle. Due to the demands of the online generation of a route whilst guaranteeing the real-time behaviour of the control system as a whole, graph based techniques for route planning were investigated in the course of the research. These techniques allow an optimal path according to defined input to be calculated within a predictable time. Two newly developed techniques for geometrical graph generation from a configuration space with elliptic-cylindrical objects and an algorithm for calculating the energy requirements (inclusive of water-current data) are described in detail. Even though the guidance concept presented in this thesis was developed for an autonomous underwater vehicle (AUV), the concept or parts of the concept are equally applicable to land based or aerial mobile autonomous systems.ZusammenfassungDie vorliegende Arbeit stellt ein vollständiges und neues Konzept zur Fahrzeugführung in Sondersituationen für ein Autonomes Unterwasserfahrzeug vor. Eine Sondersituation ist dann gegeben, wenn während einer Mission Objekte den abzufahrenden Routenplan tangieren. Die möglichen Handlungen bestehen im Ausweichen oder in der Identifikation dieser Objekte. Bei der Erstellung des Konzeptes gab es eine Reihe praxisrelevanter Anforderungen (Sicherheit, Robustheit, Rechenzeit, Optimalität) an die zu entwickelnden Verfahren und Algorithmen, die unter den hard- und softwaretechnischen Vorgaben und Arbeitsbedingungen einzuhalten waren. Solche Vorgaben umfassen das nichtholonome, verzögerte Bewegungsverhalten des Unterwasserfahrzeuges, die Sensorik zur Bestimmung der Umwelt, die im Fahrzeug eingesetzte Rechentechnik sowie die zu verwendende Entwicklungs- und Kommunikationssoftware. Die Arbeitsbedingungen eines Unterwasserfahrzeuges sind durch ein Manövrieren im dreidimensionalen Raum bei einer möglichen Seeströmung, schlechter Sicht und hohem Wasserdruck unter Einhaltung eines Sicherheitsabstandes zum Meeresbodens und zu den geographischen Hindernissen, technischen Bauten und Altlasten charakterisiert.Das entwickelte Konzept ist modular aufgebaut und umfasst Komponenten zur Kollisionsüberwachung, Zielpunktgenerierung, Kollisionsvermeidung, Fahrzeugführung bei Identifikationsaufgaben sowie zur Fahrzeugsteuerung. Für die Kollisionsüberwachung wird ein Zwei-Phasen-Konzept eingesetzt. Dieses Konzept ermöglicht eine schnelle Kollisionsüberprüfung durch die Verwendung einfacher Kollisionstests zur Vorselektion möglicher Kollisionskandidaten. Das in dieser Arbeit entwickelte Kollisionsvermeidungssystem besitzt eine hybride Struktur, bei der ein reaktiver (Reaktive Steuerung) und ein planender Ansatz (Wegeplanung) parallel arbeiten. Die Reaktive Steuerung übernimmt die Führung des Fahrzeuges, während die Wegeplanung einen Routenplan generiert. Steht ein Routenplan zur Verfügung, arbeitet die Wegeplanung diesen ab. Für die Reaktive Steuerung wurde ein neues Verfahren zur geometrischen Konstruktion von Gradientenlinien entwickelt. Es verbindet die Vorteile des von Guldner entwickelten Verfahrens der Harmonischen Dipolpotentiale mit der Forderung einer wegoptimalen Fahrweise unter Berücksichtigung des nichtholonomen, verzögerten Bewegungsverhaltens des Fahrzeuges. Durch die Forderung der online-Erzeugung eines Routenplanes unter Gewährleistung des Echtzeitverhaltens des Systems wurden graphenbasierte Verfahren für die Wegeplanung untersucht. Diese Verfahren ermöglichen es, einen optimalen Weg nach definierten Vorgaben in einer kalkulierbaren Zeit zu ermitteln. Zwei neu entwickelte Verfahren zur Generierung eines geometrischen Graphen aus einem Konfigurationsraum mit elliptischen Objektzylindern sowie ein Algorithmus zur Bestimmung der Fahrtkosten unter Einbeziehung der Strömungsinformation werden detailliert beschrieben. Obgleich das in dieser Arbeit vorgestellte Führungskonzept für ein Autonomes Unterwasserfahrzeug entwickelt wurde, können Teile dieser Arbeit auch für boden- und luftgeführte Autonome Mobile Systeme angewandt werden.Auch im Buchhandel erhältlich: Intelligentes Führungskonzept für ein autonomes Unterwasserfahrzeug in Sondersituationen / von Mike Joachim Eichhorn . - Düsseldorf : VDI-Verl., 2007. XIII, 172 S.. : Ill., graph. Darst. ISBN 978-3-18-512708-3 Preis: 51,30

    Modulare, verteilte Hardware-Software-Architektur für humanoide Roboter

    Get PDF
    Humanoide Roboter sind hochkomplexe Systeme. Sie zeichnen sich durch ein sehr heterogenes Sensor- und Aktorsystem aus, welches wiederum sehr hohe und breit gefächerte Anforderungen an die verwendete Architektur stellt. Es wird sowohl der Entwurf einer funktionalen Steuerungsarchitektur, das verwendete Softwarerahmenwerk als auch die Abbildung auf eine dezidierte Hardwarearchitektur beschrieben

    Jahresbericht 2009 der Fakultät für Informatik

    Get PDF

    Modulare, verteilte Hardware-Software-Architektur für humanoide Roboter

    Get PDF
    Humanoide Roboter sind hochkomplexe Systeme. Sie zeichnen sich durch ein sehr heterogenes Sensor- und Aktorsystem aus, welches wiederum sehr hohe und breit gefächerte Anforderungen an die verwendete Architektur stellt. Es wird sowohl der Entwurf einer funktionalen Steuerungsarchitektur, das verwendete Softwarerahmenwerk als auch die Abbildung auf eine dezidierte Hardwarearchitektur beschrieben

    Skill and ability graphs as basis for a safe operation of automated vehicles in public traffic in urban environments

    Get PDF
    In der vorliegenden Arbeit wird ein Beitrag zur Sicherheit automatisierter Fahrzeuge für den öffentlichen Straßenverkehr geleistet. Im ersten Teil werden die Rahmenbedingungen für automatisierte Fahrzeuge betrachtet und wesentliche Begriffe definiert. Im Fokus steht dabei eine Betrachtung der Automatisierungsgrade für automatisierte Fahrzeuge. Der Stand der Forschung zur Automatisierung von Fahrzeugen schließt diesen Teil. Im zweiten Teil wird der Entwicklungsprozess nach Norm ISO 26262 betrachtet und auf automatisierte Fahrzeuge angewendet. Hierfür werden die Prozessschritte zur Erstellung einer Item-Definition für das vollständig automatisierte Fahrzeug auf Abruf als Anwendungsfall des automatisierten Fahrens in der Stadt exemplarisch durchgeführt. Da eine vollständige Item-Definition mit einer Betrachtung von allen Szenarien im Rahmen einer Dissertation nicht erstellt werden kann, werden ausgewählte pathologische Szenarien genutzt, um die Anforderungen abzuleiten. Zusätzlich werden Fertigkeitengraphen zur Modellierung von Fahrzeugführungssystemen in die Konzepthase integriert. Diese ermöglichen eine Modellierung des Systems angelehnt an die Aktivitäten, die ein Mensch bei der Fahrzeugführung ausführt. Im dritten Teil wird ein funktionales Sicherheitskonzept entwickelt, das den Betrieb von automatisierten Fahrzeugen im städtischen Straßenverkehr ermöglichen soll. Als erster Schritt wird eine Gefährdungsanalyse und Risikobewertung für die pathologischen Szenarien des vollständig automatisierten Fahrzeugs auf Abruf durchgeführt. Als Ergebnis stehen die Sicherheitsziele zur Verfügung. Das funktionale Sicherheitskonzept setzt diese Sicherheitsziele durch eine Selbstwahrnehmung und Selbstrepräsentation des automatisierten Fahrzeugs um. Die Selbstrepräsentation wird durch eine Überführung des Fertigkeitengraphen in einen Fähigkeitengraph erreicht. In diesem werden aggregierte Gütemaße berechnet, die ein Abbild der aktuellen Leistungsfähigkeit des automatisierten Fahrzeugs unter Berücksichtigung der aktuellen Situation ermöglichen. Die Selbstrepräsentation kann anschließend als Eingangsgröße für Fahrentscheidungen genutzt werden. Die Erhaltung eines sicheren Zustands wird durch die funktionale Degradation erreicht und durch Selbstheilung kann sich die Leistungsfähigkeit im Betrieb verbessern.This work contributes to the safety of automated road vehicles for public traffic. The first part covers surrounding conditions for automated vehicles and important terms are defined. Especially automation levels for automated vehicles are focused. The state of research for vehicle automation closes this part. The second part considers the development process according to the ISO 26262 standard and its applicability to automated vehicles. The development steps to create an Item Definition for a fully automated vehicle on demand as an example of automated driving are applied. A complete Item Definition covering all scenarios is not feasible in a single dissertation. Thus, part two uses selected pathological scenarios to deviate requirements. Additionally, skill graphs to model vehicle guidance systems are integrated into the concept phase. Theses graphs allow a modeling of systems adapted from the activities performed by humans while driving. In the third part a functional safety concept is developed. This should enable the operation of automated vehicles in public traffic. As a first step, a hazard identification and risk assessment for the pathological scenarios of the fully automated vehicle on demand is performed. This results in safety goals, which need to be fulfilled by the resulting system. The functional safety concept implements the safety goals by introducing a self-perception and a self-representation for automated vehicles. The self-representation is achieved with a transfer of the skill graph to an ability graph. In the ability gaph, aggregated performance metrics are calculated, which create a representation of the current performance capabilities of the automated vehicle in respect to the current driving situation. The resulting self-representation can then be used as an input to the driving decisions. The preservation of a safe operating state is reached by functional degradation. With self-healing, the performance capabilities can be improved
    corecore