9,731 research outputs found

    Demonstrating the feasibility of standardized application program interfaces that will allow mobile/portable terminals to receive services combining UMTS and DVB-T

    Get PDF
    Crucial to the commercial exploitation of any service combining UMTS and DVB-T is the availability of standardized API’s adapted to the hybrid UMTS and DVB-T network and to the technical limitations of mobile/portable terminals. This paper describes work carried out in the European Commission Framework Program 5 (FP5) project CONFLUENT to demonstrate the feasibility of such Application Program Interfaces (API’s) by enabling the reception of a Multimedia Home Platform (MHP) based application transmitted over DVB-T on five different terminals with parts of the service running on a mobile phone

    Prototype gesture recognition interface for vehicular head-up display system

    Get PDF

    Sustainability, transport and design: reviewing the prospects for safely encouraging eco-driving

    No full text
    Private vehicle use contributes a disproportionately large amount to the degradation of the environment we inhabit. Technological advancement is of course critical to the mitigation of climate change, however alone it will not suffice; we must also see behavioural change. This paper will argue for the application of Ergonomics to the design of private vehicles, particularly low-carbon vehicles (e.g. hybrid and electric), to encourage this behavioural change. A brief review of literature is offered concerning the effect of the design of a technological object on behaviour, the inter-related nature of goals and feedback in guiding performance, the effect on fuel economy of different driving styles, and the various challenges brought by hybrid and electric vehicles, including range anxiety, workload and distraction, complexity, and novelty. This is followed by a discussion on the potential applicability of a particular design framework, namely Ecological Interface Design, to the design of in-vehicle interfaces that encourage energy-conserving driving behaviours whilst minimising distraction and workload, thus ensuring safety

    Teaching embedded software development utilising QNX and Qt with an automotive-themed coursework application

    Get PDF

    Novel Multimodal Feedback Techniques for In-Car Mid-Air Gesture Interaction

    Get PDF
    This paper presents an investigation into the effects of different feedback modalities on mid-air gesture interaction for infotainment systems in cars. Car crashes and near-crash events are most commonly caused by driver distraction. Mid-air interaction is a way of reducing driver distraction by reducing visual demand from infotainment. Despite a range of available modalities, feedback in mid-air gesture systems is generally provided through visual displays. We conducted a simulated driving study to investigate how different types of multimodal feedback can support in-air gestures. The effects of different feedback modalities on eye gaze behaviour, and the driving and gesturing tasks are considered. We found that feedback modality influenced gesturing behaviour. However, drivers corrected falsely executed gestures more often in non-visual conditions. Our findings show that non-visual feedback can reduce visual distraction significantl

    Evaluation of Haptic Patterns on a Steering Wheel

    Get PDF
    Infotainment Systems can increase mental workload and divert visual attention away from looking ahead on the roads. When these systems give information to the driver, provide it through the tactile channel on the steering, it wheel might improve driving behaviour and safety. This paper describes an investigation into the perceivability of haptic feedback patterns using an actuated surface on a steering wheel. Six solenoids were embedded along the rim of the steering wheel creating three bumps under each palm. Maximally, four of the six solenoids were actuated simultaneously, resulting in 56 patterns to test. Participants were asked to keep in the middle road of the driving simulator as good as possible. Overall recognition accuracy of the haptic patterns was 81.3%, where identification rate increased with decreasing number of active solenoids (up to 92.2% for a single solenoid). There was no significant increase in lane deviation or steering angle during haptic pattern presentation. These results suggest that drivers can reliably distinguish between cutaneous patterns presented on the steering wheel. Our findings can assist in delivering non-critical messages to the driver (e.g. driving performance, incoming text messages, etc.) without decreasing driving performance or increasing perceived mental workload
    • …
    corecore