27 research outputs found

    Securing the Next Generation Web

    Get PDF
    With the ever-increasing digitalization of society, the need for secure systems is growing. While some security features, like HTTPS, are popular, securing web applications, and the clients we use to interact with them remains difficult.To secure web applications we focus on both the client-side and server-side. For the client-side, mainly web browsers, we analyze how new security features might solve a problem but introduce new ones. We show this by performing a systematic analysis of the new Content Security Policy (CSP)\ua0 directive navigate-to. In our research, we find that it does introduce new vulnerabilities, to which we recommend countermeasures. We also create AutoNav, a tool capable of automatically suggesting navigation policies for this directive. Finding server-side vulnerabilities in a black-box setting where\ua0 there is no access to the source code is challenging. To improve this, we develop novel black-box methods for automatically finding vulnerabilities. We\ua0 accomplish this by identifying key challenges in web scanning and combining the best of previous methods. Additionally, we leverage SMT solvers to\ua0 further improve the coverage and vulnerability detection rate of scanners.In addition to browsers, browser extensions also play an important role in the web ecosystem. These small programs, e.g. AdBlockers and password\ua0 managers, have powerful APIs and access to sensitive user data like browsing history. By systematically analyzing the extension ecosystem we find new\ua0 static and dynamic methods for detecting both malicious and vulnerable extensions. In addition, we develop a method for detecting malicious extensions\ua0 solely based on the meta-data of downloads over time. We analyze new attack vectors introduced by Google’s new vehicle OS, Android Automotive. This\ua0 is based on Android with the addition of vehicle APIs. Our analysis results in new attacks pertaining to safety, privacy, and availability. Furthermore, we\ua0 create AutoTame, which is designed to analyze third-party apps for vehicles for the vulnerabilities we found

    Africa's digital future

    Get PDF
    The main thrust of this book is to examine whether Africa is in a position to benefit from the digital age, given the continent’s many development challenges and slow adoption of digital technologies. While there is substantial literature on the digital economy and the quickening pace of the Fourth Industrial Revolution (4IR), comparatively little research has been conducted on what the digital age means for Africa. This book aims to close this research gap by using various qualitative and quantitative research methodologies to arrive at a cross-section of original findings and perspectives on how Africa can capitalise on the benefits of digital developments, including their potential to create jobs and bring about more inclusive growth. The book’s main contribution is its coverage of a range of topics that will affect Africa’s digital future, including industrialisation, global value chains, transport and logistics, trade facilitation, labour-market dynamics, employment and education. The theme of digital trade forms a backdrop to many of the chapters, along with references to the COVID-19 pandemic. The book acknowledges that although African countries should learn from international best practices, they need to chart their own course according to their own particular circumstances. By adopting a digital mindset, countries should be able to diversify economically and extend their market reach across the continent. Furthermore, while Africa should be looking to the future and determining how digital technologies can become effective tools of sustainable development, the continent has much catching up to do

    Investigation of Vehicle-to-Everything (V2X) Communication for Autonomous Control of Connected Vehicles

    Get PDF
    Autonomous Driving Vehicles (ADVs) has received considerable attention in recent years by academia and industry, bringing about a paradigm shift in Intelligent Transportation Systems (ITS), where vehicles operate in close proximity through wireless communication. It is envisioned as a promising technology for realising efficient and intelligent transportation systems, with potential applications for civilian and military purposes. Vehicular network management for ADVs is challenging as it demands mobility, location awareness, high reliability, and low latency data traffic. This research aims to develop and implement vehicular communication in conjunction with a driving algorithm for ADVs feedback control system with a specific focus on the safe displacement of vehicle platoon while sensing the surrounding environment, such as detecting road signs and communicate with other road users such as pedestrian, motorbikes, non-motorised vehicles and infrastructure. However, in order to do so, one must investigate crucial aspects related to the available technology, such as driving behaviour, low latency communication requirement, communication standards, and the reliability of such a mechanism to decrease the number of traffic accidents and casualties significantly. To understand the behaviour of wireless communication compared to the theoretical data rates, throughput, and roaming behaviour in a congested indoor line-of-sight heterogeneous environment, we first carried out an experimental study for IEEE 802.11a, 802.11n and 802.11ac standards in a 5 GHz frequency spectrum. We validated the results with an analytical path loss model as it is essential to understand how the client device roams or decides to roam from one Access Point to another and vice-versa. We observed seamless roaming between the tested protocols irrespective of their operational environment (indoor or outdoor); their throughput efficiency and data rate were also improved by 8-12% when configured with Short Guard Interval (SGI) of 400ns compared to the theoretical specification of the tested protocols. Moreover, we also investigated the Software-Defined Networking (SDN) for vehicular communication and compared it with the traditional network, which is generally incorporated vertically where control and data planes are bundled collectively. The SDN helped gain more flexibility to support multiple core networks for vehicular communication and tackle the potential challenges of network scalability for vehicular applications raised by the ADVs. In particular, we demonstrate that the SDN improves throughput efficiency by 4% compared to the traditional network while ensuring efficient bandwidth and resource management. Finally, we proposed a novel data-driven coordination model which incorporates Vehicle-to-Everything (V2X) communication and Intelligent Driver Model (IDM), together called V2X Enabled Intelligent Driver Model (VX-IDM). Our model incorporates a Car-Following Model (CFM), i.e., IDM, to model a vehicle platoon in an urban and highway traffic scenario while ensuring the vehicle platoon's safety with the integration of IEEE 802.11p Vehicle-to-Infrastructure (V2I) communication scheme. The model integrates the 802.11p V2I communication channel with the IDM in MATLAB using ODE‐45 and utilises the 802.11p simulation toolbox for configuring vehicular channels. To demonstrate model functionality in urban and highway traffic environments, we developed six case studies. We also addressed the heterogeneity issue of wireless networks to improve the overall network reliability and efficiency by estimating the Signal-to-Noise Ratio (SNR) parameters for the platoon vehicle's displacement and location on the road from Road-Side-Units (RSUs). The simulation results showed that inter-vehicle spacing could be steadily maintained at a minimum safe value at all the time. Moreover, the model has a fault-tolerant mechanism that works even when communication with infrastructure is interrupted or unavailable, making the VX-IDM model collision-free

    Africa's digital future

    Get PDF
    The main thrust of this book is to examine whether Africa is in a position to benefit from the digital age, given the continent’s many development challenges and slow adoption of digital technologies. While there is substantial literature on the digital economy and the quickening pace of the Fourth Industrial Revolution (4IR), comparatively little research has been conducted on what the digital age means for Africa. This book aims to close this research gap by using various qualitative and quantitative research methodologies to arrive at a cross-section of original findings and perspectives on how Africa can capitalise on the benefits of digital developments, including their potential to create jobs and bring about more inclusive growth. The book’s main contribution is its coverage of a range of topics that will affect Africa’s digital future, including industrialisation, global value chains, transport and logistics, trade facilitation, labour-market dynamics, employment and education. The theme of digital trade forms a backdrop to many of the chapters, along with references to the COVID-19 pandemic. The book acknowledges that although African countries should learn from international best practices, they need to chart their own course according to their own particular circumstances. By adopting a digital mindset, countries should be able to diversify economically and extend their market reach across the continent. Furthermore, while Africa should be looking to the future and determining how digital technologies can become effective tools of sustainable development, the continent has much catching up to do

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field
    corecore