755 research outputs found

    Prototype gesture recognition interface for vehicular head-up display system

    Get PDF

    ์ฐจ๋Ÿ‰์šฉ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„์— ๊ด€ํ•œ ์ธ๊ฐ„๊ณตํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฐ•์šฐ์ง„.Head-up display (HUD) systems were introduced into the automobile industry as a means for improving driving safety. They superimpose safety-critical information on top of the drivers forward field of view and thereby help drivers keep their eyes forward while driving. Since the first introduction about three decades ago, automotive HUDs have been available in various commercial vehicles. Despite the long history and potential benefits of automotive HUDs, however, the design of useful automotive HUDs remains a challenging problem. In an effort to contribute to the design of useful automotive HUDs, this doctoral dissertation research conducted four studies. In Study 1, the functional requirements of automotive HUDs were investigated by reviewing the major automakers' automotive HUD products, academic research studies that proposed various automotive HUD functions, and previous research studies that surveyed drivers HUD information needs. The review results indicated that: 1) the existing commercial HUDs perform largely the same functions as the conventional in-vehicle displays, 2) past research studies proposed various HUD functions for improving driver situation awareness and driving safety, 3) autonomous driving and other new technologies are giving rise to new HUD information, and 4) little research is currently available on HUD users perceived information needs. Based on the review results, this study provides insights into the functional requirements of automotive HUDs and also suggests some future research directions for automotive HUD design. In Study 2, the interface design of automotive HUDs for communicating safety-related information was examined by reviewing the existing commercial HUDs and display concepts proposed by academic research studies. Each display was analyzed in terms of its functions, behaviors and structure. Also, related human factors display design principles, and, empirical findings on the effects of interface design decisions were reviewed when information was available. The results indicated that: 1) information characteristics suitable for the contact-analog and unregistered display formats, respectively, are still largely unknown, 2) new types of displays could be developed by combining or mixing existing displays or display elements at both the information and interface element levels, and 3) the human factors display principles need to be used properly according to the situation and only to the extent that the resulting display respects the limitations of the human information processing, and achieving balance among the principles is important to an effective design. On the basis of the review results, this review suggests design possibilities and future research directions on the interface design of safety-related automotive HUD systems. In Study 3, automotive HUD-based take-over request (TOR) displays were developed and evaluated in terms of drivers take-over performance and visual scanning behavior in a highly automated driving situation. Four different types of TOR displays were comparatively evaluated through a driving simulator study - they were: Baseline (an auditory beeping alert), Mini-map, Arrow, and Mini-map-and-Arrow. Baseline simply alerts an imminent take-over, and was always included when the other three displays were provided. Mini-map provides situational information. Arrow presents the action direction information for the take-over. Mini-map-and-Arrow provides the action direction together with the relevant situational information. This study also investigated the relationship between drivers initial trust in the TOR displays and take-over and visual scanning behavior. The results indicated that providing a combination of machine-made decision and situational information, such as Mini-map-and-Arrow, yielded the best results overall in the take-over scenario. Also, drivers initial trust in the TOR displays was found to have significant associations with the take-over and visual behavior of drivers. The higher trust group primarily relied on the proposed TOR displays, while the lower trust group tended to more check the situational information through the traditional displays, such as side-view or rear-view mirrors. In Study 4, the effect of interactive HUD imagery location on driving and secondary task performance, driver distraction, preference, and workload associated with use of scrolling list while driving were investigated. A total of nine HUD imagery locations of full-windshield were examined through a driving simulator study. The results indicated the HUD imagery location affected all the dependent measures, that is, driving and task performance, drivers visual distraction, preference and workload. Considering both objective and subjective evaluations, interactive HUDs should be placed near the driver's line of sight, especially near the left-bottom on the windshield.์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ์ฐจ๋‚ด ๋””์Šคํ”Œ๋ ˆ์ด ์ค‘ ํ•˜๋‚˜๋กœ ์šด์ „์ž์—๊ฒŒ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ „๋ฐฉ์— ํ‘œ์‹œํ•จ์œผ๋กœ์จ, ์šด์ „์ž๊ฐ€ ์šด์ „์„ ํ•˜๋Š” ๋™์•ˆ ์ „๋ฐฉ์œผ๋กœ ์‹œ์„ ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋„์™€์ค€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์šด์ „์ž์˜ ์ฃผ์˜ ๋ถ„์‚ฐ์„ ์ค„์ด๊ณ , ์•ˆ์ „์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์€ ์•ฝ 30๋…„ ์ „ ์šด์ „์ž์˜ ์•ˆ์ „์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ˆ˜๋‹จ์œผ๋กœ ์ž๋™์ฐจ ์‚ฐ์—…์— ์ฒ˜์Œ ๋„์ž…๋œ ์ด๋ž˜๋กœ ํ˜„์žฌ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ƒ์šฉ์ฐจ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์•ˆ์ „๊ณผ ํŽธ์˜ ์ธก๋ฉด์—์„œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์‚ฌ์šฉ์€ ์ ์  ๋” ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ž ์žฌ์  ์ด์ ๊ณผ ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์œ ์šฉํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ์œ ์šฉํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„์— ๊ธฐ์—ฌํ•˜๊ณ ์ž ์ด 4๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ ์š”๊ตฌ ์‚ฌํ•ญ๊ณผ ๊ด€๋ จ๋œ ๊ฒƒ์œผ๋กœ์„œ, ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์–ด๋–ค ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ์ธ๊ฐ€์— ๋Œ€ํ•œ ๋‹ต์„ ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์— ์ฃผ์š” ์ž๋™์ฐจ ์ œ์กฐ์—…์ฒด๋“ค์˜ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์ œํ’ˆ๋“ค๊ณผ, ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ๋“ค์„ ์ œ์•ˆํ•œ ํ•™์ˆ  ์—ฐ๊ตฌ, ๊ทธ๋ฆฌ๊ณ  ์šด์ „์ž์˜ ์ •๋ณด ์š”๊ตฌ ์‚ฌํ•ญ๋“ค์„ ์ฒด๊ณ„์  ๋ฌธํ—Œ ๊ณ ์ฐฐ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ํฌ๊ด„์ ์œผ๋กœ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ์  ์š”๊ตฌ ์‚ฌํ•ญ์— ๋Œ€ํ•˜์—ฌ ๊ฐœ๋ฐœ์ž, ์—ฐ๊ตฌ์ž, ์‚ฌ์šฉ์ž ์ธก๋ฉด์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ํ†ตํ•ฉ๋œ ์ง€์‹์„ ์ „๋‹ฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ ์š”๊ตฌ ์‚ฌํ•ญ์— ๋Œ€ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์™€ ๊ด€๋ จ๋œ ๊ฒƒ์œผ๋กœ, ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์–ด๋–ป๊ฒŒ ์ œ๊ณตํ•  ๊ฒƒ์ธ๊ฐ€์— ๋Œ€ํ•œ ๋‹ต์„ ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์‹ค์ œ ์ž๋™์ฐจ๋“ค์˜ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์—์„œ๋Š” ์–ด๋–ค ๋””์Šคํ”Œ๋ ˆ์ด ์ปจ์…‰๋“ค์ด ์‚ฌ์šฉ๋˜์—ˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ํ•™๊ณ„์—์„œ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ์ปจ์…‰๋“ค์—๋Š” ์–ด๋–ค ๊ฒƒ๋“ค์ด ์žˆ๋Š”์ง€ ์ฒด๊ณ„์  ๋ฌธํ—Œ ๊ณ ์ฐฐ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๊ฒ€ํ† ๋œ ๊ฒฐ๊ณผ๋Š” ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ๊ณผ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  ์ž‘๋™ ๋ฐฉ์‹์— ๋”ฐ๋ผ ์ •๋ฆฌ๋˜์—ˆ๊ณ , ๊ด€๋ จ๋œ ์ธ๊ฐ„๊ณตํ•™์  ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„ ์›์น™๊ณผ ์‹คํ—˜์  ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์„ ํ•จ๊ป˜ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๊ฒ€ํ† ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ๋Œ€ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ถŒ ์ „ํ™˜ ๊ด€๋ จ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์™€ ํ‰๊ฐ€์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ œ์–ด๊ถŒ ์ „ํ™˜์ด๋ž€, ์ž์œจ์ฃผํ–‰ ์ƒํƒœ์—์„œ ์šด์ „์ž๊ฐ€ ์ง์ ‘ ์šด์ „์„ ํ•˜๋Š” ์ˆ˜๋™ ์šด์ „ ์ƒํƒœ๋กœ ์ „ํ™˜์ด ๋˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ‘์ž‘์Šค๋Ÿฐ ์ œ์–ด๊ถŒ ์ „ํ™˜ ์š”์ฒญ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ, ์šด์ „์ž๊ฐ€ ์•ˆ์ „ํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋น ๋ฅธ ์ƒํ™ฉ ํŒŒ์•…๊ณผ ์˜์‚ฌ ๊ฒฐ์ •์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋„์™€์ฃผ๊ธฐ ์œ„ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ์ด 4๊ฐœ์˜ ์ œ์–ด๊ถŒ ์ „ํ™˜ ๊ด€๋ จ ๋””์Šคํ”Œ๋ ˆ์ด(๊ธฐ์ค€ ๋””์Šคํ”Œ๋ ˆ์ด, ๋ฏธ๋‹ˆ๋งต ๋””์Šคํ”Œ๋ ˆ์ด, ํ™”์‚ดํ‘œ ๋””์Šคํ”Œ๋ ˆ์ด, ๋ฏธ๋‹ˆ๋งต๊ณผ ํ™”์‚ดํ‘œ ๋””์Šคํ”Œ๋ ˆ์ด)๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ๋Œ€์•ˆ๋“ค์€ ์ฃผํ–‰ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊ณผ ์•ˆ๊ตฌ์˜ ์›€์ง์ž„ ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์  ํ‰๊ฐ€ ์ธก๋ฉด์—์„œ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ๋Œ€์•ˆ๋“ค์— ๋Œ€ํ•ด ์šด์ „์ž๋“ค์˜ ์ดˆ๊ธฐ ์‹ ๋ขฐ๋„ ๊ฐ’์„ ์ธก์ •ํ•˜์—ฌ ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋”ฐ๋ฅธ ์šด์ „์ž๋“ค์˜ ํ‰๊ท  ์‹ ๋ขฐ๋„ ์ ์ˆ˜์— ๋”ฐ๋ผ ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊ณผ ์•ˆ๊ตฌ์˜ ์›€์ง์ž„ ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์ฃผ๊ด€์  ํ‰๊ฐ€๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ƒํ™ฉ์—์„œ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์ด ์ œ์•ˆํ•˜๋Š” ์ •๋ณด์™€ ๊ทธ์™€ ๊ด€๋ จ๋œ ์ฃผ๋ณ€ ์ƒํ™ฉ ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ์ œ์‹œํ•ด ์ฃผ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋Œ€ํ•œ ์šด์ „์ž์˜ ์ดˆ๊ธฐ ์‹ ๋ขฐ๋„ ์ ์ˆ˜๋Š” ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์‹ค์ œ ์‚ฌ์šฉ ํ–‰ํƒœ์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹ ๋ขฐ๋„ ์ ์ˆ˜์— ๋”ฐ๋ผ ์‹ ๋ขฐ๋„๊ฐ€ ๋†’์€ ๊ทธ๋ฃน๊ณผ ๋‚ฎ์€ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๊ณ , ์‹ ๋ขฐ๋„๊ฐ€ ๋†’์€ ๊ทธ๋ฃน์€ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด๋“ค์ด ๋ณด์—ฌ์ฃผ๋Š” ์ •๋ณด๋ฅผ ์ฃผ๋กœ ๋ฏฟ๊ณ  ๋”ฐ๋ฅด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๋˜ ๋ฐ˜๋ฉด, ์‹ ๋ขฐ๋„๊ฐ€ ๋‚ฎ์€ ๊ทธ๋ฃน์€ ๋ฃธ ๋ฏธ๋Ÿฌ๋‚˜ ์‚ฌ์ด๋“œ ๋ฏธ๋Ÿฌ๋ฅผ ํ†ตํ•ด ์ฃผ๋ณ€ ์ƒํ™ฉ ์ •๋ณด๋ฅผ ๋” ํ™•์ธ ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๋„ค ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ์˜ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ตœ์  ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ์„œ ์ฃผํ–‰ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์‹คํ—˜์„ ํ†ตํ•ด ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜์— ๋”ฐ๋ผ ์šด์ „์ž์˜ ์ฃผํ–‰ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋””์Šคํ”Œ๋ ˆ์ด ์กฐ์ž‘ ๊ด€๋ จ ๊ณผ์—… ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์‹œ๊ฐ์  ์ฃผ์˜ ๋ถ„์‚ฐ, ์„ ํ˜ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์ž‘์—… ๋ถ€ํ•˜๊ฐ€ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๋Š” ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์ด 9๊ฐœ์˜ ์œ„์น˜๊ฐ€ ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ™œ์šฉ๋œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ์Œ์•… ์„ ํƒ์„ ์œ„ํ•œ ์Šคํฌ๋กค ๋ฐฉ์‹์˜ ๋‹จ์ผ ๋””์Šคํ”Œ๋ ˆ์ด์˜€๊ณ , ์šด์ „๋Œ€์— ์žฅ์ฐฉ๋œ ๋ฒ„ํŠผ์„ ํ†ตํ•ด ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์กฐ์ž‘ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๊ฐ€ ๋ชจ๋“  ํ‰๊ฐ€ ์ฒ™๋„, ์ฆ‰ ์ฃผํ–‰ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ๋””์Šคํ”Œ๋ ˆ์ด ์กฐ์ž‘ ๊ณผ์—… ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์‹œ๊ฐ์  ์ฃผ์˜ ๋ถ„์‚ฐ, ์„ ํ˜ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์ž‘์—… ๋ถ€ํ•˜์— ์˜ํ–ฅ์„ ๋ฏธ์นจ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ชจ๋“  ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ณ ๋ คํ–ˆ์„ ๋•Œ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๋Š” ์šด์ „์ž๊ฐ€ ๋˜‘๋ฐ”๋กœ ์ „๋ฐฉ์„ ๋ฐ”๋ผ๋ณผ ๋•Œ์˜ ์‹œ์•ผ ๊ตฌ๊ฐ„, ์ฆ‰ ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ์˜ ์™ผ์ชฝ ์•„๋ž˜ ๋ถ€๊ทผ์ด ๊ฐ€์žฅ ์ตœ์ ์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.Abstract i Contents v List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives and Questions 8 1.3 Structure of the Thesis 11 Chapter 2 Functional Requirements of Automotive Head-Up Displays: A Systematic Review of Literature from 1994 to Present 13 2.1 Introduction 13 2.2 Method 15 2.3 Results 17 2.3.1 Information Types Displayed by Existing Commercial Automotive HUD Systems 17 2.3.2 Information Types Previously Suggested for Automotive HUDs by Research Studies 28 2.3.3 Information Types Required by Drivers (users) for Automotive HUDs and Their Relative Importance 35 2.4 Discussion 39 2.4.1 Information Types Displayed by Existing Commercial Automotive HUD Systems 39 2.4.2 Information Types Previously Suggested for Automotive HUDs by Research Studies 44 2.4.3 Information Types Required by Drivers (users) for Automotive HUDs and Their Relative Importance 48 Chapter 3 A Literature Review on Interface Design of Automotive Head-Up Displays for Communicating Safety-Related Information 50 3.1 Introduction 50 3.2 Method 52 3.3 Results 55 3.3.1 Commercial Automotive HUDs Presenting Safety-Related Information 55 3.3.2 Safety-Related HUDs Proposed by Academic Research 58 3.4 Discussion 74 Chapter 4 Development and Evaluation of Automotive Head-Up Displays for Take-Over Requests (TORs) in Highly Automated Vehicles 78 4.1 Introduction 78 4.2 Method 82 4.2.1 Participants 82 4.2.2 Apparatus 82 4.2.3 Automotive HUD-based TOR Displays 83 4.2.4 Driving Scenario 86 4.2.5 Experimental Design and Procedure 87 4.2.6 Experiment Variables 88 4.2.7 Statistical Analyses 91 4.3 Results 93 4.3.1 Comparison of the Proposed TOR Displays 93 4.3.2 Characteristics of Drivers Initial Trust in the four TOR Displays 102 4.3.3 Relationship between Drivers Initial Trust and Take-over and Visual Behavior 104 4.4 Discussion 113 4.4.1 Comparison of the Proposed TOR Displays 113 4.4.2 Characteristics of Drivers Initial Trust in the four TOR Displays 116 4.4.3 Relationship between Drivers Initial Trust and Take-over and Visual Behavior 117 4.5 Conclusion 119 Chapter 5 Human Factors Evaluation of Display Locations of an Interactive Scrolling List in a Full-windshield Automotive Head-Up Display System 121 5.1 Introduction 121 5.2 Method 122 5.2.1 Participants 122 5.2.2 Apparatus 123 5.2.3 Experimental Tasks and Driving Scenario 123 5.2.4 Experiment Variables 124 5.2.5 Experimental Design and Procedure 126 5.2.6 Statistical Analyses 126 5.3 Results 127 5.4 Discussion 133 5.5 Conclusion 135 Chapter 6 Conclusion 137 6.1 Summary and Implications 137 6.2 Future Research Directions 139 Bibliography 143 Apeendix A. Display Layouts of Some Commercial HUD Systems Appendix B. Safety-related Displays Provided by the Existing Commercial HUD Systems Appendix C. Safety-related HUD displays Proposed by Academic Research ๊ตญ๋ฌธ์ดˆ๋ก 187Docto

    Collision warning design in automotive head-up displays

    Get PDF
    Abstract. In the last few years, the automotive industry has experienced a large growth in the hardware and the underlying electronics. The industry benefits from both Human Machine Interface (HMI) research and modern technology. There are many applications of the Advanced Driver Assistant System (ADAS) and their positive impact on drivers is even more. Forward Collision Warning (FCW) is one of many applications of ADAS. In the last decades, different approaches and tools are used to implement FCW systems. Current Augmented Reality (AR) applications are feasible to integrate in modern cars. In this thesis work, we introduce three different FCW designs: static, animated and 3D animated warnings. We test the proposed designs in three different environments: day, night and rain. The designs static and animated achieve a minimum response time 0.486 s whereas the 3D animated warning achieves 1.153 s

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiserโ€™s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflรคchen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mรถgliche Ausprรคgung von Mark Weisers Vision der allgegenwรคrtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Gerรคten des tรคglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berรผhrungsempfindliche Oberflรคchen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflรคchen werden mittlerweile serienmรครŸig in vielen Fahrzeugen eingesetzt. Der Einbau von immer grรถรŸeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflรคchen ermรถglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten mรถglich. Auf diese Weise erfรผllen sie die sich wandelnden Informations- und Interaktionsbedรผrfnisse in besonderem MaรŸe. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit wรคhrend der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen fรผhren, wenn Primรคr- und Sekundรคraufgaben mehr als die insgesamt verfรผgbare Aufmerksamkeit des Fahrers beanspruchen. Herkรถmmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberflรคche bereit, die keinerlei haptische Rรผckmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansรคtze ermรถglichen dem Fahrer, direkte Touchinteraktion fรผr einfache Aufgaben wรคhrend der Fahrt zu nutzen. AuรŸerhalb der Automobilindustrie, zum Beispiel fรผr Bรผroarbeitsplรคtze, wurden bereits verschiedene Konzepte fรผr eine komplexere Bedienung groรŸer Bildschirme vorgestellt. Darรผber hinaus fรผhrt der technologische Fortschritt zu neuen mรถglichen Ausprรคgungen interaktiver Oberflรคchen und erlaubt, diese beliebig zu formen. Fรผr die nรคchste Generation von interaktiven Oberflรคchen im Fahrzeug wird vor allem an der Modifikation der Kategorien GrรถรŸe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch grรถรŸere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden kรถnnen. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflรคchen auf, so dass Touchscreens kรผnftig ertastbare Strukturen aufweisen kรถnnen. Diese Dissertation beschreibt die systematische Untersuchung groรŸer und nicht-flacher interaktiver Oberflรคchen und analysiert ihr Potential fรผr die Interaktion wรคhrend der Fahrt. Dazu wurden fรผr jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflรคchen im Automobilbereich. Weiterhin werden die Aspekte GrรถรŸe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkรถmmlichen Touchscreens zu verbessern. Die durchgefรผhrten Studien belegen, dass groรŸe Flรคchen neue und verbesserte Bedienmรถglichkeiten bieten kรถnnen. AuรŸerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusรคtzliches statisches, haptisches Feedback durch nicht-flache Oberflรคchen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflรคchen fรผr den automotiven Einsatz. Zudem kรถnnen die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit fรผr andere Aufgaben benรถtigt wird

    Is the driver ready to receive just car information in the windshield during manual and autonomous driving?

    Get PDF
    A automaรงรฃo estรก a mudar o mundo. Como na aeronรกutica, as empresas da indรบstria automรณvel estรฃo atualmente a desenvolver veรญculos autรณnomos. No entanto a autonomia do veรญculo nรฃo รฉ completa, necessitando por vezes das aรงรตes do condutor. A forma como รฉ feita a transiรงรฃo entre conduรงรฃo manual e autรณnoma e como mostrar esta informaรงรฃo de transiรงรฃo para o condutor constitui um desafio para a ergonomia. Novos ecrรฃs estรฃo a ser estudados para facilitar estas transiรงรตes. Este estudo usou um simulador de conduรงรฃo para investigar, se a informaรงรฃo em realidade aumentada pode influenciar positivamente a experiรชncia do condutor durante a conduรงรฃo manual e autรณnoma. Compararam-se duas formas de apresentar a comunicaรงรฃo ao condutor. Um โ€œconceito ARโ€ mostrou toda a informaรงรฃo no para-brisas para ser mais fรกcil o condutor aceder ร  informaรงรฃo. O โ€œconceito ICโ€ mostrou a informaรงรฃo que aparece atualmente nos carros, usando o painel de instrumentos e o e-HUD. Os resultados indicam que a experiรชncia do utilizador (UX) รฉ influenciada pelos conceitos, sendo que o โ€œconceito ARโ€ teve uma melhor UX em todos os estados de transiรงรฃo. Em termos de confianรงa, os resultados revelaram tambรฉm valores mais elevado para o โ€œconceito ARโ€. O tipo de conceito nรฃo influenciou nem o tempo nem o comportamento de retomar o controlo do carro. Em termos de situaรงรฃo consciente, o โ€œconceito ARโ€ deixa os condutores mais conscientes durante a disponibilidade e ativaรงรฃo da funรงรฃo. Este estudo traz implicaรงรตes para as empresas que desenvolvem a prรณxima geraรงรฃo de ecrรฃs no mundo automรณvel.Automation is changing the world. As in aviation, the car manufacturers are currently developing autonomous vehicles. However, the autonomy of that vehicles isnโ€™t complete, still being needed in certain moments the driver on ride. The way how is done this transition between manual and autonomous driving and how show this information to the driver is a challenge for Ergonomics. New displays are being studied to facilitate these transitions. This study used a driving simulator to investigates, whether augmented reality information can positively influence the user experience during manual and autonomous driving. Therefore, we compared two ways of present the communicate to the driver. The โ€œAR conceptโ€ displays all the information in windshield to be easier to the driver access to the information. The โ€œIC conceptโ€ displays the information that appears nowadays in the cars, where they use the Instrument Cluster and the e-HUD to display information. Results indicate that the user experience (UX) is influence by concepts, where โ€œAR conceptโ€ had better UX in all the states. In terms of confidence, the results revealed higher scores in โ€œAR conceptโ€ too. The type of concept does not influence the takeover times or the behavior of take control. In terms of situational awareness (SA), โ€œAR conceptโ€ leave the drivers more aware during availability and activation. This study provides implications for automotive companies developing the next generation of car displays

    Exploration of smart infrastructure for drivers of autonomous vehicles

    Get PDF
    The connection between vehicles and infrastructure is an integral part of providing autonomous vehicles information about the environment. Autonomous vehicles need to be safe and users need to trust their driving decision. When smart infrastructure information is integrated into the vehicle, the driver needs to be informed in an understandable manner what the smart infrastructure detected. Nevertheless, interactions that benefit from smart infrastructure have not been the focus of research, leading to knowledge gaps in the integration of smart infrastructure information in the vehicle. For example, it is unclear, how the information from two complex systems can be presented, and if decisions are made, how these can be explained. Enriching the data of vehicles with information from the infrastructure opens unexplored opportunities. Smart infrastructure provides vehicles with information to predict traffic flow and traffic events. Additionally, it has information about traffic events in several kilometers distance and thus enables a look ahead on a traffic situation, which is not in the immediate view of drivers. We argue that this smart infrastructure information can be used to enhance the driving experience. To achieve this, we explore designing novel interactions, providing warnings and visualizations about information that is out of the view of the driver, and offering explanations for the cause of changed driving behavior of the vehicle. This thesis focuses on exploring the possibilities of smart infrastructure information with a focus on the highway. The first part establishes a design space for 3D in-car augmented reality applications that profit from smart infrastructure information. Through the input of two focus groups and a literature review, use cases are investigated that can be introduced in the vehicle's interaction interface which, among others, rely on environment information. From those, a design space that can be used to design novel in-car applications is derived. The second part explores out-of-view visualizations before and during take over requests to increase situation awareness. With three studies, different visualizations for out-of-view information are implemented in 2D, stereoscopic 3D, and augmented reality. Our results show that visualizations improve the situation awareness about critical events in larger distances during take over request situations. In the third part, explanations are designed for situations in which the vehicle drives unexpectedly due to unknown reasons. Since smart infrastructure could provide connected vehicles with out-of-view or cloud information, the driving maneuver of the vehicle might remain unclear to the driver. Therefore, we explore the needs of drivers in those situations and derive design recommendations for an interface which displays the cause for the unexpected driving behavior. This thesis answers questions about the integration of environment information in vehicles'. Three important aspects are explored, which are essential to consider when implementing use cases with smart infrastructure in mind. It enables to design novel interactions, provides insights on how out-of-view visualizations can improve the drivers' situation awareness and explores unexpected driving situations and the design of explanations for them. Overall, we have shown how infrastructure and connected vehicle information can be introduced in vehicles' user interface and how new technology such as augmented reality glasses can be used to improve the driver's perception of the environment.Autonome Fahrzeuge werden immer mehr in den alltรคglichen Verkehr integriert. Die Verbindung von Fahrzeugen mit der Infrastruktur ist ein wesentlicher Bestandteil der Bereitstellung von Umgebungsinformationen in autonome Fahrzeugen. Die Erweiterung der Fahrzeugdaten mit Informationen der Infrastruktur erรถffnet ungeahnte Mรถglichkeiten. Intelligente Infrastruktur รผbermittelt verbundenen Fahrzeugen Informationen รผber den prรคdizierten Verkehrsfluss und Verkehrsereignisse. Zusรคtzlich kรถnnen Verkehrsgeschehen in mehreren Kilometern Entfernung รผbermittelt werden, wodurch ein Vorausblick auf einen Bereich ermรถglicht wird, der fรผr den Fahrer nicht unmittelbar sichtbar ist. Mit dieser Dissertation wird gezeigt, dass Informationen der intelligenten Infrastruktur benutzt werden kรถnnen, um das Fahrerlebnis zu verbessern. Dies kann erreicht werden, indem innovative Interaktionen gestaltet werden, Warnungen und Visualisierungen รผber Geschehnisse auรŸerhalb des Sichtfelds des Fahrers vermittelt werden und indem Erklรคrungen รผber den Grund eines verรคnderten Fahrzeugverhaltens untersucht werden. Interaktionen, welche von intelligenter Infrastruktur profitieren, waren jedoch bisher nicht im Fokus der Forschung. Dies fรผhrt zu Wissenslรผcken bezรผglich der Integration von intelligenter Infrastruktur in das Fahrzeug. Diese Dissertation exploriert die Mรถglichkeiten intelligenter Infrastruktur, mit einem Fokus auf die Autobahn. Der erste Teil erstellt einen Design Space fรผr Anwendungen von augmentierter Realitรคt (AR) in 3D innerhalb des Autos, die unter anderem von Informationen intelligenter Infrastruktur profitieren. Durch das Ergebnis mehrerer Studien werden Anwendungsfรคlle in einem Katalog gesammelt, welche in die Interaktionsschnittstelle des Autos einflieรŸen kรถnnen. Diese Anwendungsfรคlle bauen unter anderem auf Umgebungsinformationen. Aufgrund dieser Anwendungen wird der Design Space entwickelt, mit Hilfe dessen neuartige Anwendungen fรผr den Fahrzeuginnenraum entwickelt werden kรถnnen. Der zweite Teil exploriert Visualisierungen fรผr Verkehrssituationen, die auรŸerhalb des Sichtfelds des Fahrers sind. Es wird untersucht, ob durch diese Visualisierungen der Fahrer besser auf ein potentielles รœbernahmeszenario vorbereitet wird. Durch mehrere Studien wurden verschiedene Visualisierungen in 2D, stereoskopisches 3D und augmentierter Realitรคt implementiert, die Szenen auรŸerhalb des Sichtfelds des Fahrers darstellen. Diese Visualisierungen verbessern das Situationsbewusstsein รผber kritische Szenarien in einiger Entfernung wรคhrend eines รœbernahmeszenarios. Im dritten Teil werden Erklรคrungen fรผr Situationen gestaltet, in welchen das Fahrzeug ein unerwartetes Fahrmanรถver ausfรผhrt. Der Grund des Fahrmanรถvers ist dem Fahrer dabei unbekannt. Mit intelligenter Infrastruktur verbundene Fahrzeuge erhalten Informationen, die auรŸerhalb des Sichtfelds des Fahrers liegen oder von der Cloud bereit gestellt werden. Dadurch kรถnnte der Grund fรผr das unerwartete Fahrverhalten unklar fรผr den Fahrer sein. Daher werden die Bedรผrfnisse des Fahrers in diesen Situationen erforscht und Empfehlungen fรผr die Gestaltung einer Schnittstelle, die Erklรคrungen fรผr das unerwartete Fahrverhalten zur Verfรผgung stellt, abgeleitet. Zusammenfassend wird gezeigt wie Daten der Infrastruktur und Informationen von verbundenen Fahrzeugen in die Nutzerschnittstelle des Fahrzeugs implementiert werden kรถnnen. Zudem wird aufgezeigt, wie innovative Technologien wie AR Brillen, die Wahrnehmung der Umgebung des Fahrers verbessern kรถnnen. Durch diese Dissertation werden Fragen รผber Anwendungsfรคlle fรผr die Integration von Umgebungsinformationen in Fahrzeugen beantwortet. Drei wichtige Themengebiete wurden untersucht, welche bei der Betrachtung von Anwendungsfรคllen der intelligenten Infrastruktur essentiell sind. Durch diese Arbeit wird die Gestaltung innovativer Interaktionen ermรถglicht, Einblicke in Visualisierungen von Informationen auรŸerhalb des Sichtfelds des Fahrers gegeben und es wird untersucht, wie Erklรคrungen fรผr unerwartete Fahrsituationen gestaltet werden kรถnnen
    • โ€ฆ
    corecore