127 research outputs found

    Quantum logic as a dynamic logic

    Get PDF
    We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no". Philosophically, our argument is based on combining a formal semantic approach, in the spirit of E. W. Beth's proposal of applying Tarski's semantical methods to the analysis of physical theories, with an empirical-experimental approach to Logic, as advocated by both Beth and Putnam, but understood by us in the view of the operational-realistic tradition of Jauch and Piron, i.e. as an investigation of "the logic of yes-no experiments" (or "questions"). Technically, we use the recently-developed setting of Quantum Dynamic Logic (Baltag and Smets 2005, 2008) to make explicit the operational meaning of quantum-mechanical concepts in our formal semantics. Based on our recent results (Baltag and Smets 2005), we show that the correct interpretation of quantum-logical connectives is dynamical, rather than purely propositional. We conclude that there is no contradiction between classical logic and (our dynamic reinterpretation of) quantum logic. Moreover, we argue that the Dynamic-Logical perspective leads to a better and deeper understanding of the "non-classicality" of quantum behavior than any perspective based on static Propositional Logic

    Classical limit and quantum logic

    Get PDF
    The more common scheme to explain the classical limit of quantum mechanics includes decoherence, which removes from the state the interference terms classically inadmissible since embodying non-Booleanity. In this work we consider the classical limit from a logical viewpoint, as a quantum-to-Boolean transition. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times

    An Algebraic View of Space/Belief and Extrusion/Utterance for Concurrency/Epistemic Logic

    Get PDF
    International audienceWe enrich spatial constraint systems with operators to specify information and processes moving from a space to another. We shall refer to these news structures as spatial constraint systems with extrusion. We shall investigate the properties of this new family of constraint systems and illustrate their applications. From a computational point of view the new operators provide for pro-cess/information extrusion, a central concept in formalisms for mobile communication. From an epistemic point of view extrusion corresponds to a notion we shall call utterance; a piece of information that an agent communicates to others but that may be inconsistent with the agent's beliefs. Utterances can then be used to express instances of epistemic notions, which are common place in social media, such as hoaxes or intentional lies. Spatial constraint systems with extrusion can be seen as complete Heyting algebras equipped with maps to account for spatial and epistemic specification
    • …
    corecore