981 research outputs found

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    Trivalent Graph isomorphism in polynomial time

    Get PDF
    It's important to design polynomial time algorithms to test if two graphs are isomorphic at least for some special classes of graphs. An approach to this was presented by Eugene M. Luks(1981) in the work \textit{Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time}. Unfortunately, it was a theoretical algorithm and was very difficult to put into practice. On the other hand, there is no known implementation of the algorithm, although Galil, Hoffman and Luks(1983) shows an improvement of this algorithm running in O(n3logn)O(n^3 \log n). The two main goals of this master thesis are to explain more carefully the algorithm of Luks(1981), including a detailed study of the complexity and, then to provide an efficient implementation in SAGE system. It is divided into four chapters plus an appendix.Comment: 48 pages. It is a Master Thesi

    Isomorphism test for digraphs with weighted edges

    Get PDF
    Colour refinement is at the heart of all the most efficient graph isomorphism software packages. In this paper we present a method for extending the applicability of refinement algorithms to directed graphs with weighted edges. We use Traces as a reference software, but the proposed solution is easily transferrable to any other refinement-based graph isomorphism tool in the literature. We substantiate the claim that the performances of the original algorithm remain substantially unchanged by showing experiments for some classes of benchmark graphs
    corecore