140,632 research outputs found

    PMU-based informational support of power system control tasks

    Full text link
    Up-to-date wide area measurement systems (WAMS) based on phasor measurement units (PMU) appeared at the very end of the 20th century. Under present-day conditions, WAMS serve as the basis for information-measuring systems, which significantly improve power system control and operation. In practice, WAMS are mostly used for power system stability control and transient monitoring and visualization. This paper discusses the new opportunities for power system control quality improvement, resulting from PMU application for power system steady-state parameters' assessment. Firstly, better control is provided by online equivalent circuit parameters' identification using PMU measurement data and taking into account FACTS and other shunt and series compensation equipment. Secondly, the paper addresses the problems of "nodal" identification, which have taken on great importance recently due to the intensive development of small-scaled distributed generation. Based on PMU measurements of nodal voltages and incident transmission lines' electric currents, one can obtain online steady-state load characteristics, which can be used for dispatch control applications. Moreover, PMUs provide superaccelerated power flow calculations, which are of crucial importance for emergency automation, adjusted for prior operation. Such principles of emergency automation consist of the quick determination of control actions, aimed at power system stability maintenance in cases of any programmed faults' occurrence. It is known that such control is carried out by means of power flow calculations based on remote metering data. The proposed application and allocation of PMUs in the power system by means of combinatorial matrix transformation to triangle form give the possibility to perform accelerated node-voltage analysis without equivalent circuit simplification. All the calculations are verified using IEEE test networks. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Exploiting multi-agent system technology within an autonomous regional active network management system

    Get PDF
    This paper describes the proposed application of multi-agent system (MAS) technology within AuRA-NMS, an autonomous regional network management system currently being developed in the UK through a partnership between several UK universities, distribution network operators (DNO) and a major equipment manufacturer. The paper begins by describing the challenges facing utilities and why those challenges have led the utilities, a major manufacturer and the UK government to invest in the development of a flexible and extensible active network management system. The requirements the utilities have for a network automation system they wish to deploy on their distribution networks are discussed in detail. With those requirements in mind the rationale behind the use of multi-agent systems (MAS) within AuRA-NMS is presented and the inherent research and design challenges highlighted including: the issues associated with robustness of distributed MAS platforms; the arbitration of different control functions; and the relationship between the ontological requirements of Foundation for Intelligent Physical Agent (FIPA) compliant multi-agent systems, legacy protocols and standards such as IEC 61850 and the common information model (CIM)

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Industrial Fieldbus Improvements in Power Distribution and Conducted Noise Immunity With No Extra Costs

    Get PDF
    Industrial distributed control continues the move toward networks at all levels. At lower levels, control networks provide flexibility, reliability, and low cost, although perhaps the simplest but most important advantage is the reduced volume of wiring. Powered fieldbuses offer particular notable benefits in system wiring simplification. Nevertheless, very few papers are dealing with the potentials and limitations in power distribution through the bus cable. Only a few of the existent fieldbus standards consider this possibility but often simply as an option without enough technical specifications. In fact, nobody talks about it, but power distribution through the bus and conducted noise disturbances are strongly related. This paper points out and analyzes these limitations and proposes a new low-cost fieldbus physical layer that enlarges power distribution capability of the bus and improves system robustness. We show an industrial application on water desalination plants and the very good results obtained owing to the fieldbus. Finally, we present electromagnetic compatibility test results that verify improvements against electrical fast transients on the sensor/actuator connection side as disturbances usually encountered in harsh-environment industrial applications
    • 

    corecore