1,583 research outputs found

    Automating Requirements Traceability: Two Decades of Learning from KDD

    Full text link
    This paper summarizes our experience with using Knowledge Discovery in Data (KDD) methodology for automated requirements tracing, and discusses our insights.Comment: The work of the second author has been supported in part by NSF grants CCF-1511117 and CICI 1642134; 4 pages; in Proceedings of IEEE Requirements Engineering 201

    Preserving the Quality of Architectural Tactics in Source Code

    Get PDF
    In any complex software system, strong interdependencies exist between requirements and software architecture. Requirements drive architectural choices while also being constrained by the existing architecture and by what is economically feasible. This makes it advisable to concurrently specify the requirements, to devise and compare alternative architectural design solutions, and ultimately to make a series of design decisions in order to satisfy each of the quality concerns. Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in nature, stored in the heads of people, and lost over time. Therefore, developers often lack comprehensive knowledge of underlying architectural design decisions and inadvertently degrade the quality of the architecture while performing maintenance activities. In practice, this problem can be addressed through preserving the relationships between the requirements, architectural design decisions and their implementations in the source code, and then using this information to keep developers aware of critical architectural aspects of the code. This dissertation presents a novel approach that utilizes machine learning techniques to recover and preserve the relationships between architecturally significant requirements, architectural decisions and their realizations in the implemented code. Our approach for recovering architectural decisions includes the two primary stages of training and classification. In the first stage, the classifier is trained using code snippets of different architectural decisions collected from various software systems. During this phase, the classifier learns the terms that developers typically use to implement each architectural decision. These ``indicator terms\u27\u27 represent method names, variable names, comments, or the development APIs that developers inevitably use to implement various architectural decisions. A probabilistic weight is then computed for each potential indicator term with respect to each type of architectural decision. The weight estimates how strongly an indicator term represents a specific architectural tactics/decisions. For example, a term such as \emph{pulse} is highly representative of the heartbeat tactic but occurs infrequently in the authentication. After learning the indicator terms, the classifier can compute the likelihood that any given source file implements a specific architectural decision. The classifier was evaluated through several different experiments including classical cross-validation over code snippets of 50 open source projects and on the entire source code of a large scale software system. Results showed that classifier can reliably recognize a wide range of architectural decisions. The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the code and to protect them from potential degradation during maintenance activities. It has several features for performing change impact analysis of architectural concerns at both the code and design level and proactively keep developers informed of underlying architectural decisions during maintenance activities. Archie is at the stage of technology transfer at the US Department of Homeland Security where it is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into the Department of Homeland Security\u27s Software Assurance Market Place (SWAMP) to advance research and development of secure software systems

    Technique Integration for Requirements Assessment

    Get PDF
    In determining whether to permit a safety-critical software system to be certified and in performing independent verification and validation (IV&V) of safety- or mission-critical systems, the requirements traceability matrix (RTM) delivered by the developer must be assessed for accuracy. The current state of the practice is to perform this work manually, or with the help of general-purpose tools such as word processors and spreadsheets Such work is error-prone and person-power intensive. In this paper, we extend our prior work in application of Information Retrieval (IR) methods for candidate link generation to the problem of RTM accuracy assessment. We build voting committees from five IR methods, and use a variety of voting schemes to accept or reject links from given candidate RTMs. We report on the results of two experiments. In the first experiment, we used 25 candidate RTMs built by human analysts for a small tracing task involving a portion of a NASA scientific instrument specification. In the second experiment, we randomly seeded faults in the RTM for the entire specification. Results of the experiments are presented

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Traceability Management Architectures Supporting Total Traceability in the Context of Software Engineering

    Get PDF
    In the area of Software Engineering, traceability is defined as the capability to track requirements, their evolution and transformation in different components related to engineering process, as well as the management of the relationships between those components. However the current state of the art in traceability does not keep in mind many of the elements that compose a product, specially those created before requirements arise, nor the appropriated use of traceability to manage the knowledge underlying in order to be handled by other organizational or engineering processes. In this work we describe the architecture of a reference model that establishes a set of definitions, processes and models which allow a proper management of traceability and further uses of it, in a wider context than the one related to software development

    Traceability Management Architectures Supporting Total Traceability in the Context of Software Engineering

    Get PDF
    In the area of Software Engineering, traceability is defined as the capability to track requirements, their evolution and transformation in different components related to engineering process, as well as the management of the relationships between those components. However the current state of the art in traceability does not keep in mind many of the elements that compose a product, specially those created before requirements arise, nor the appropriated use of traceability to manage the knowledge underlying in order to be handled by other organizational or engineering processes. In this work we describe the architecture of a reference model that establishes a set of definitions, processes and models which allow a proper management of traceability and further uses of it, in a wider context than the one related to software development

    Datasets Used in Fifteen Years of Automated Requirements Traceability Research

    Get PDF
    Datasets are crucial to advance automated software traceability research. Acquiring such datasets come in a high cost and require expert knowledge to manually collect and validate them. Obtaining such software development datasets has been one of the most frequently reported barrier for researchers in the software engineering domain in general. This problem is even more acute in field of requirement traceability, which plays crucial role in safety critical and highly regulated systems. Therefore, the main motivation behind this work is to analyze the current state of art of datasets used in the field of software traceability. This work presents a first-of-its-kind literature study to review and assess the datasets that have been used in software traceability research over the last fifteen years. It articulates several attributes related to these datasets such as their characteristics, threats and diversity. Firstly, 202 primary studies (refer Appendix A) were identified for purpose of this study, which were used to derive 73 unique datasets. These 73 datasets were studied in-depth and several attributes (size, type, domain, availability, artifacts) were extracted (refer Appendix B). Based on analysis of the primary studies, a threat to validity reference model, tailored to Software traceability datasets was derived (refer to figure 4.4). Furthermore, to put some light upon the dataset diversity trend in the Software traceability community, a metric called Dataset Diversity Ratio was derived for 38 authors (refer to figure 4.5) who have published more than one publication in field of software traceability

    The Need for a Unifying Traceability Scheme

    Get PDF
    The benefits of traceability are widely accepted nowadays, however, several issues still make it difficult a wide-scale adoption of traceability in the software engineering practice. There is a lack of a commonly accepted traceability definition further than the term definition, a standard way of specifying traceability among items, and a traceability type classification; besides, conflicts among a number of approaches exist. As a result traceability-schemes implementation in tools lacks of generality and exchangeability. Round trip engineering therefore cannot be well enough supported. The motivation behind is aligned with that of PIM within the MDA initiative. This paper analyzes several current traceability schemes, in order to obtain relevant features and identify overlaps and inconsistencies among the approaches. Then, and based on the analysis, it provides an initial approach for a Traceability Specification Scheme. This scheme is expected to facilitate traceability specification for a given project, to improve the traceability management, and help to automate some traces management processes
    corecore