6 research outputs found

    Hybrid visualizations for data exploration

    Get PDF
    Information Visualization (Infovis) graphically encodes information to help a user explore a data set visually and interactively. This graphical encoding can take the form of widespread visualizations such as bar charts and scatterplots. Multiple visualizations can share the same functional space to form complete tools for visual exploration or for communicating information. There is multiple ways of combining these visualizations. The assembly of multiple visualizations can give some complex assemblies sometimes called hybrid visualizations. A hybrid visualization is the result of assembling multiple simpler visualizations. For example, NodeTrix (Henry et al., 2007a) is composed of a node-link diagram and an adjacency matrix, and MatLink (Henry and Fekete, 2007a) adds arc links to an adjacency matrix. This integration of multiple visualizations can be a way to combine their advantages into a coherent structure. The integration can be achieved, for example, through color coding, or through explicit linking (such as with arrows), or through interaction (such as when different visualizations respond to the manipulation of others). Recent literature contains several examples of new hybrid visualizations, most often to deal with complex datasets where the user can benefit from multiple, complementary visual encodings of the same data. However, to date, there is almost no theory or framework to help researchers understand and characterize existing hybrids or design new ones. This thesis advances the state of the art in hybrid visualizations in two ways: first, by developing a framework that defines and characterizes hybrid visualizations to help better identify, describe and design them, and second, by demonstrating a variety of novel hybrids. The hybrid visualizations we explored cover a wide range of possibilities. Two of the most general and widely used data types in Infovis, multidimensional multivariate data and graph (i.e., network) data, are each the subject of a chapter in the thesis, with novel hybrid visualization techniques presented for each. A wide range of possibilities for integration is also presented using a pipeline model. After some preliminary material, chapter 2 of the thesis presents a conceptual framework that defines and characterizes hybrid visualizations. This framework was itself derived from experience designing the hybrid visualizations presented in the subsequent chapters. A hybrid visualization is described as a graphical encoding using other visualizations as building blocks. We present a pipeline to illustrate the assembly of a visualization, starting from the generation of basic shapes or glyphs, then placed on a layout, embellished by adding other graphical elements, then sent to some view transform operators and assembled on the same space. Simple charts can be described with this pipeline as well as more complex assembly and new hybrids are described. Chapter 3 presents ConnectedCharts, an example of a hybrid assembled on the assembly level of the pipeline, made of multiple multidimensional and multivariate charts explicitly connected by lines or curves showing the relationship between their elements. A user interface enables the interactive assembly of ConnectedCharts, including a wide range of previously-published hybrid visualizations, as well as novel hybrid arrangements. ConnectedCharts serve as an illustration of the conceptual framework in chapter 2, by exploring possible connections between different graphics depending on the relationship of their encoded data types. Chapter 4 presents another user interface, this time for graph exploration, that incorporates several highly integrated hybrid visualizations. A Parallel Scatter Plot Matrix (P-SPLOM) is presented that constitutes a fusion of a Scatter Plot Matrix (SPLOM) and a Parallel Coordinates Plot (PCP). A radial menu called the FlowVizMenu enables the modification of a visualization integrated at the center of the menu. This menu is also used to select the dimensions for configuring a third hybrid based on an Attribute-Driven Layout (ADL) that combines a nodelink diagram and a scatterplot. The characterization of hybrid visualizations offered by the conceptual framework, as well as the illustration of the framework by innovative hybrid visualizations, are the main contributions of this thesis to the Infovis community

    Pattern Mining and Sense-Making Support for Enhancing the User Experience

    Get PDF
    While data mining techniques such as frequent itemset and sequence mining are well established as powerful pattern discovery tools in domains from science, medicine to business, a detriment is the lack of support for interactive exploration of high numbers of patterns generated with diverse parameter settings and the relationships among the mined patterns. To enhance the user experience, real-time query turnaround times and improved support for interactive mining are desired. There is also an increasing interest in applying data mining solutions for mobile data. Patterns mined over mobile data may enable context-aware applications ranging from automating frequently repeated tasks to providing personalized recommendations. Overall, this dissertation addresses three problems that limit the utility of data mining, namely, (a.) lack of interactive exploration tools for mined patterns, (b.) insufficient support for mining localized patterns, and (c.) high computational mining requirements prohibiting mining of patterns on smaller compute units such as a smartphone. This dissertation develops interactive frameworks for the guided exploration of mined patterns and their relationships. Contributions include the PARAS pre- processing and indexing framework; enabling analysts to gain key insights into rule relationships in a parameter space view due to the compact storage of rules that enables query-time reconstruction of complete rulesets. Contributions also include the visual rule exploration framework FIRE that presents an interactive dual view of the parameter space and the rule space, that together enable enhanced sense-making of rule relationships. This dissertation also supports the online mining of localized association rules computed on data subsets by selectively deploying alternative execution strategies that leverage multidimensional itemset-based data partitioning index. Finally, we designed OLAPH, an on-device context-aware service that learns phone usage patterns over mobile context data such as app usage, location, call and SMS logs to provide device intelligence. Concepts introduced for modeling mobile data as sequences include compressing context logs to intervaled context events, adding generalized time features, and identifying meaningful sequences via filter expressions

    Cognitive Foundations for Visual Analytics

    Full text link

    Automating the creation of interactive glyph-supplemented scatterplots for visualizing algorithm results

    No full text

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    corecore