301 research outputs found

    Automation of motor dexterity assessment

    Get PDF
    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p <; 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Photoplethysmography based atrial fibrillation detection: an updated review from July 2019

    Full text link
    Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team previously conducted an exhaustive review on PPG-based AF detection before June 2019. However, since then, more advanced technologies have emerged in this field. This paper offers a comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December 2022. Through extensive exploration of scientific databases, we have identified 59 pertinent studies. Our comprehensive review encompasses an in-depth assessment of the statistical methodologies, traditional machine learning techniques, and deep learning approaches employed in these studies. In addition, we address the challenges encountered in the domain of PPG-based AF detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with regular updates on a regular basis

    A Study on Human Fall Detection Systems: Daily Activity Classification and Sensing Techniques

    Get PDF
    Fall detection for elderly is a major topic as far as assistive technologies are concerned. This is due to the high demand for the products and technologies related to fall detection with the ageing population around the globe. This paper gives a review of previous works on human fall detection devices and a preliminary results from a developing depth sensor based device. The three main approaches used in fall detection devices such as wearable based devices, ambient based devices and vision based devices are identified along with the sensors employed.  The frameworks and algorithms applied in each of the approaches and their uniqueness is also illustrated. After studying the performance and the shortcoming of the available systems a future solution using depth sensor is also proposed with preliminary results

    Sensor optimization in smart insoles for post-stroke gait asymmetries using total variation and L1 distances

    Get PDF
    By deploying pressure sensors on insoles, the forces exerted by the different parts of the foot when performing tasks standing up can be captured. The number and location of sensors to use are important factors in order to enhance the accuracy of parameters used in assessment while minimizing the cost of the device by reducing the number of deployed sensors. Selecting the best locations and the required number of sensors depends on the application and the features that we want to assess. In this paper, we present a computational process to select the optimal set of sensors to characterize gait asymmetries and plantar pressure patterns for stroke survivors based upon the total variation and L1 distances. The proposed mechanism is ecologically validated in a real environment with 14 stroke survivors and 14 control users. The number of sensors is reduced to 4, minimizing the cost of the device both for commercial users and companies and enhancing the cost to benefit ratio for its uptake from a national healthcare system. The results show that the sensors that better represent the gait asymmetries for healthy controls are the sensors under the big toe and midfoot and the sensors in the forefoot and midfoot for stroke survivors. The results also show that all four regions of the foot (toes, forefoot, midfoot, and heel) play an important role for plantar pressure pattern reconstruction for stroke survivors, while the heel and forefoot region are more prominent for healthy controls

    Development of an EMG-based Muscle Health Model for Elbow Trauma Patients

    Get PDF
    Musculoskeletal (MSK) conditions are a leading cause of pain and disability worldwide. Rehabilitation is critical for recovery from these conditions and for the prevention of long-term disability. Robot-assisted therapy has been demonstrated to provide improvements to stroke rehabilitation in terms of efficiency and patient adherence. However, there are no wearable robot-assisted solutions for patients with MSK injuries. One of the limiting factors is the lack of appropriate models that allow the use of biosignals as an interface input. Furthermore, there are no models to discern the health of MSK patients as they progress through their therapy. This thesis describes the design, data collection, analysis, and validation of a novel muscle health model for elbow trauma patients. Surface electromyography (sEMG) data sets were collected from the injured arms of elbow trauma patients performing 10 upper-limb motions. The data were assessed and compared to sEMG data collected from the patients\u27 contralateral healthy limbs. A statistical analysis was conducted to identify trends relating the sEMG signals to muscle health. sEMG-based classification models for muscle health were developed. Relevant sEMG features were identified and combined into feature sets for the classification models. The classifiers were used to distinguish between two levels of health: healthy and injured (50% baseline accuracy rate). Classification models based on individual motions achieved cross-validation accuracies of 48.2--79.6%. Following feature selection and optimization of the models, cross-validation accuracies of up to 82.1% were achieved. This work suggests that there is a potential for implementing an EMG-based model of muscle health in a rehabilitative elbow brace to assess patients recovering from MSK elbow trauma. However, more research is necessary to improve the accuracy and the specificity of the classification models
    • …
    corecore