390 research outputs found

    Program Improvement by Automatic Redistribution of Intermediate Results

    Get PDF
    This paper was originally a Ph.D. thesis proposal.The problem of automatically improving the performance of computer programs has many facets. A common source of program inefficiency is the use of abstraction techniques in program design: general tools used in a specific context often do unnecessary or redundant work. Examples include needless copy operations, redundant subexpressions, multiple traversals of the same datastructure and maintenance of overly complex data invariants. I propose to focus on one broadly applicable way of improving a program's performance: redistributing intermediate results so that computation can be avoided. I hope to demonstrate that this is a basic principle of optimization from which many of the current approaches to optimization may be derived. I propose to implement a system that automatically finds and exploits opportunities for redistribution in a given program. In addition to the program source, the system will accept an explanation of correctness and purpose of the code. Beyond the specific task of program improvement, I anticipate that the research will contribute to our understanding of the design and explanatory structure of programs. Major results will include (1) definition and manipulation of representation of correctness and purpose of a program's implementation, and (2) definition, construction, and use of a representation of a program's dynamic behavior.MIT Artificial Intelligence Laborator

    A model and framework for reliable build systems

    Full text link
    Reliable and fast builds are essential for rapid turnaround during development and testing. Popular existing build systems rely on correct manual specification of build dependencies, which can lead to invalid build outputs and nondeterminism. We outline the challenges of developing reliable build systems and explore the design space for their implementation, with a focus on non-distributed, incremental, parallel build systems. We define a general model for resources accessed by build tasks and show its correspondence to the implementation technique of minimum information libraries, APIs that return no information that the application doesn't plan to use. We also summarize preliminary experimental results from several prototype build managers

    A Framework for an Automated Compilation System for Reconfigurable Architectures

    Get PDF
    The advent of the Field Programmable Gate Array has allowed the implementation of runtime reconfigurable computer systems. These systems are capable of configuring their hardware to provide custom hardware support for software applications. Since these architectures can be reconfigured during operation, they are able to provide hardware support for a variety of applications, without removal from the system. The Air Force is currently investigating reconfigurable architectures for avionics and signal processing applications. This thesis investigates the problem of automating the application development process for reconfigurable architectures. The lack of automated development support is a major limiting factor in the use of these systems. This thesis creates a framework for a reconfigurable compiler, which automatically implements a single high level language specification as a reconfigurable hardware/software application. The major tasks in the process are examined, and possible methods for implementation are investigated. A prototype reconfigurable compiler has been developed to demonstrate the feasibility of important concepts, and to uncover additional areas of difficulty

    Instruction-set architecture synthesis for VLIW processors

    Get PDF

    Context-aware counter abstraction

    Get PDF
    The trend towards multi-core computing has made concurrent software an important target of computer-aided verification. Unfortunately, Model Checkers for such software suffer tremendously from combinatorial state space explosion. We show how to apply counter abstraction to real-world concurrent programs to factor out redundancy due to thread replication. The traditional global state representation as a vector of local states is replaced by a vector of thread counters, one per local state. In practice, straightforward implementations of this idea are unfavorably sensitive to the number of local states. We present a novel symbolic exploration algorithm that avoids this problem by carefully scheduling which counters to track at any moment during the search. We have carried out experiments on Boolean programs, an abstraction promoted by the success of the Slam project. The experiments give evidence of the applicability of our method to realistic programs, and of the often huge savings obtained in comparison to plain symbolic state space exploration, and to exploration optimized by partial-order methods. To our knowledge, our tool marks the first implementation of counter abstraction to programs with non-trivial local state spaces, resulting in a Model Checker for concurrent Boolean programs that promises true scalabilit
    • …
    corecore