4,091 research outputs found

    Automating Test Case Selection in Model-Based Software Product Line Development

    Get PDF
    We address the problem of how to select test cases for products in a controlled model-based software product line development process. CVL, the common variability language, gives a framework for materialisation of product models from a given base model, variability model and resolution model. From such product models, software products can be derived. In practise, test case development for the product line often is independent from the product development. Therefore, the problem arises which test cases can be applied to which products. In particular, the question is whether a test case for one speci c product can be also used for a "similar" product. In this paper, we show how the expected outcome of a test case to a product in a model-based software product line development can be determined. That is, we give a procedure for assigning the outcome of a given test case on an arbitrary member of a software product line. We recall the relevant de nitions for software product line engineering, describe our approach, and demonstrate it with the example of a product line of super-automatic espresso machines

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Evolving feature model configurations in software product lines

    Get PDF
    The increasing complexity and cost of software-intensive systems has led developers to seek ways of reusing software components across development projects. One approach to increasing software reusability is to develop a software product-line (SPL), which is a software architecture that can be reconfigured and reused across projects. Rather than developing software from scratch for a new project, a new configuration of the SPL is produced. It is hard, however, to find a configuration of an SPL that meets an arbitrary requirement set and does not violate any configuration constraints in the SPL. Existing research has focused on techniques that produce a configuration of an SPL in a single step. Budgetary constraints or other restrictions, however, may require multi-step configuration processes. For example, an aircraft manufacturer may want to produce a series of configurations of a plane over a span of years without exceeding a yearly budget to add features. This paper provides three contributions to the study of multi-step configuration for SPLs. First, we present a formal model of multi-step SPL configuration and map this model to constraint satisfaction problems (CSPs). Second, we show how solutions to these SPL configuration problems can be automatically derived with a constraint solver by mapping them to CSPs. Moreover, we show how feature model changes can be mapped to our approach in a multi-step scenario by using feature model drift. Third, we present empirical results demonstrating that our CSP-based reasoning technique can scale to SPL models with hundreds of features and multiple configuration steps.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-590

    Evolution, testing and configuration of variability intensive systems

    Get PDF
    Tesis descargada desde ResearchGateOne of the key characteristics of software is its ability to be adapted and configured to different scenarios. Recently, software variability has been studied as a first-class concept in different domains ranging from software product lines to pervasive systems. Variability is the ability of a software product to vary depending on different circumstances. Variability intensive systems are those software products where variability management is a core engineering activity. The varying parts of those systems are commonly modeled by us- ing different variability model flavors, being feature modeling one of the most common ones. Feature models were first introduced by Kang et al. back in 1990 and are a compact representation of a set of configurations in a variability intensive system. The large number of configurations that a feature model can encode makes the manual analysis of feature models an error prone and costly task. Then, computer-aided mechanisms appeared as a solution to extract useful information from feature models. This process of extracting information from feature models is known as ¿Automated Analysis of Feature models¿ that has been one of the main areas of research in the last years where more than thirty analysis operations have been proposed.Premio Extraordinario de Doctorado U

    Developing Unobtrusive Mobile Interactions: a Model Driven Engineering approach

    Full text link
    In Ubiquitous computing environments, people are surrounded by a lot of embedded services. With the inclusion of pervasive technologies such as sensors or GPS receivers, mobile devices turn into an effective communication tool between users and the services embedded in their environment. All these services compete for the attentional resources of the user. Thus, it is essential to consider the degree in which each service intrudes the user mind when services are designed. In order to prevent service behavior from becoming overwhelming, this work, based on Model Driven Engineering foundations, is devoted to develop services according to user needs. In this thesis, we provide a systematic method for the development of mobile services that can be adapted in terms of obtrusiveness. That is, services can be developed to provide their functionality at different obtrusiveness levels by minimizing the duplication of efforts. For the system specification, a modeling language is defined to cope with the particular requirements of the context-aware user interface domain. From this specification, following a sequence of well-defined steps, a software solution is obtained.Gil Pascual, M. (2010). Developing Unobtrusive Mobile Interactions: a Model Driven Engineering approach. http://hdl.handle.net/10251/12745Archivo delegad

    Derivation and consistency checking of models in early software product line engineering

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaSoftware Product Line Engineering (SPLE) should offer the ability to express the derivation of product-specific assets, while checking for their consistency. The derivation of product-specific assets is possible using general-purpose programming languages in combination with techniques such as conditional compilation and code generation. On the other hand, consistency checking can be achieved through consistency rules in the form of architectural and design guidelines, programming conventions and well-formedness rules. Current approaches present four shortcomings: (1) focus on code derivation only, (2) ignore consistency problems between the variability model and other complementary specification models used in early SPLE, (3) force developers to learn new, difficult to master, languages to encode the derivation of assets, and (4) offer no tool support. This dissertation presents solutions that contribute to tackle these four shortcomings. These solutions are integrated in the approach Derivation and Consistency Checking of models in early SPLE (DCC4SPL) and its corresponding tool support. The two main components of our approach are the Variability Modelling Language for Requirements(VML4RE), a domain-specific language and derivation infrastructure, and the Variability Consistency Checker (VCC), a verification technique and tool. We validate DCC4SPL demonstrating that it is appropriate to find inconsistencies in early SPL model-based specifications and to specify the derivation of product-specific models.European Project AMPLE, contract IST-33710; Fundação para a Ciência e Tecnologia - SFRH/BD/46194/2008
    corecore