17,368 research outputs found

    Leveraging Semantic Web Service Descriptions for Validation by Automated Functional Testing

    Get PDF
    Recent years have seen the utilisation of Semantic Web Service descriptions for automating a wide range of service-related activities, with a primary focus on service discovery, composition, execution and mediation. An important area which so far has received less attention is service validation, whereby advertised services are proven to conform to required behavioural specifications. This paper proposes a method for validation of service-oriented systems through automated functional testing. The method leverages ontology-based and rule-based descriptions of service inputs, outputs, preconditions and effects (IOPE) for constructing a stateful EFSM specification. The specification is subsequently utilised for functional testing and validation using the proven Stream X-machine (SXM) testing methodology. Complete functional test sets are generated automatically at an abstract level and are then applied to concrete Web services, using test drivers created from the Web service descriptions. The testing method comes with completeness guarantees and provides a strong method for validating the behaviour of Web services

    Monitoring extensions for component-based distributed software

    Get PDF
    This paper defines a generic class of monitoring extensions to component-based distributed enterprise software. Introducing a monitoring extension to a legacy application system can be very costly. In this paper, we identify the minimum support for application monitoring within the generic components of a distributed system, necessary for rapid development of new monitoring extensions. Furthermore, this paper offers an approach for design and implementation of monitoring extensions at reduced cost. A framework of basic facilities supporting the monitoring extensions is presented. These facilities handle different aspects critical to the monitoring process, such as ordering of the generated monitoring events, decoupling of the application components from the components of the monitoring extensions, delivery of the monitoring events to multiple consumers, etc.\ud The work presented in this paper is being validated in the prototype of a large distributed system, where a specific monitoring extension is built as a tool for debugging and testing the application behaviour.\u

    Adding generic contextual capabilities to wearable computers

    Get PDF
    Context-awareness has an increasingly important role to play in the development of wearable computing systems. In order to better define this role we have identified four generic contextual capabilities: sensing, adaptation, resource discovery, and augmentation. A prototype application has been constructed to explore how some of these capabilities could be deployed in a wearable system designed to aid an ecologist's observations of giraffe in a Kenyan game reserve. However, despite the benefits of context-awareness demonstrated in this prototype, widespread innovation of these capabilities is currently stifled by the difficulty in obtaining the contextual data. To remedy this situation the Contextual Information Service (CIS) is introduced. Installed on the user's wearable computer, the CIS provides a common point of access for clients to obtain, manipulate and model contextual information independently of the underlying plethora of data formats and sensor interface mechanisms
    • 

    corecore