235 research outputs found

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding

    Get PDF
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer

    Experiments in Automating Hardware Verification using Inductive Proof Planning

    Get PDF
    We present a new approach to automating the verification of hardware designs based on planning techniques. A database of methods is developed that combines tactics, which construct proofs, using specifications of their behaviour. Given a verification problem, a planner uses the method database to build automatically a specialised tactic to solve the given problem. User interaction is limited to specifying circuits and their properties and, in some cases, suggesting lemmas. We have implemented our work in an extension of the Clam proof planning system. We report on this and its application to verifying a variety of combinational and synchronous sequential circuits including a parameterised multiplier design and a simple computer microprocessor
    corecore