165 research outputs found

    Deep Manifold Traversal: Changing Labels with Convolutional Features

    Get PDF
    Many tasks in computer vision can be cast as a "label changing" problem, where the goal is to make a semantic change to the appearance of an image or some subject in an image in order to alter the class membership. Although successful task-specific methods have been developed for some label changing applications, to date no general purpose method exists. Motivated by this we propose deep manifold traversal, a method that addresses the problem in its most general form: it first approximates the manifold of natural images then morphs a test image along a traversal path away from a source class and towards a target class while staying near the manifold throughout. The resulting algorithm is surprisingly effective and versatile. It is completely data driven, requiring only an example set of images from the desired source and target domains. We demonstrate deep manifold traversal on highly diverse label changing tasks: changing an individual's appearance (age and hair color), changing the season of an outdoor image, and transforming a city skyline towards nighttime

    SketchSoup: Exploratory Ideation Using Design Sketches

    Get PDF
    International audienceA hallmark of early stage design is a number of quick-and-dirty sketches capturing design inspirations, model variations, and alternate viewpoints of a visual concept. We present SketchSoup, a workflow that allows designers to explore the design space induced by such sketches. We take an unstructured collection of drawings as input, along with a small number of user-provided correspondences as input. We register them using a multi-image matching algorithm, and present them as a 2D interpolation space. By morphing sketches in this space, our approach produces plausible visualizations of shape and viewpoint variations despite the presence of sketch distortions that would prevent standard camera calibration and 3D reconstruction. In addition, our interpolated sketches can serve as inspiration for further drawings, which feed back into the design space as additional image inputs. SketchSoup thus fills a significant gap in the early ideation stage of conceptual design by allowing designers to make better informed choices before proceeding to more expensive 3D modeling and prototyping. From a technical standpoint, we describe an end-to-end system that judiciously combines and adapts various image processing techniques to the drawing domain – where the images are dominated not by color, shading and texture, but by sketchy stroke contours

    Automatically Controlled Morphing of 2D Shapes with Textures

    Get PDF
    This paper deals with 2D image transformations from a perspective of a 3D heterogeneous shape modeling and computer animation. Shape and image morphing techniques have attracted a lot of attention in artistic design, computer animation, and interactive and streaming applications. We present a novel method for morphing between two topologically arbitrary 2D shapes with sophisticated textures (raster color attributes) using a metamorphosis technique called space-time blending (STB) coupled with space-time transfinite interpolation. The method allows for a smooth transition between source and target objects by generating in-between shapes and associated textures without setting any correspondences between boundary points or features. The method requires no preprocessing and can be applied in 2D animation when position and topology of source and target objects are significantly different. With the conversion of given 2D shapes to signed distance fields, we have detected a number of problems with directly applying STB to them. We propose a set of novel and mathematically substantiated techniques, providing automatic control of the morphing process with STB and an algorithm of applying those techniques in combination. We illustrate our method with applications in 2D animation and interactive applications
    • …
    corecore