608 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Software Engineering for Real-Time NoSQL Systems-centric Big Data Analytics

    Get PDF
    Recent advances in Big Data Analytics (BDA) have stimulated widespread interest to integrate BDA capabilities into all aspects of a business. Before these advances, companies have spent time optimizing the software development process and best practices associated with application development. These processes include project management structures and how to deliver new features of an application to its customers efficiently. While these processes are significant for application development, they cannot be utilized effectively for the software development of Big Data Analytics. Instead, some practices and technologies enable automation and monitoring across the full lifecycle of productivity from design to deployment and operations of Analytics. This paper builds on those practices and technologies and introduces a highly scalable framework for Big Data Analytics development operations. This framework builds on top of the best-known processes associated with DevOps. These best practices are then shown using a NoSQL cloud-based platform that consumes and processes structured and unstructured real-time data. As a result, the framework produces scalable, timely, and accurate analytics in real-time, which can be easily adjusted or enhanced to meet the needs of a business and its customers

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Cloud Management Architecture for Private Clouds

    Get PDF
    Operation management for a private cloud infrastructure faces many challenges including efficient resource allocation, load-balancing, and quick response to real-time work- load changes. Traditional manual IT operation management is inadequate for this highly dynamic and complex environment. This work presents a distributed service architecture that is designed to provide an automated, shared, off-site operation management service for private clouds. The service architecture incorporates important concepts such as: Metric Templates for minimizing the network overhead for transmission of cloud metrics; a Cloud Snapshot that provides a global view of the current status of the cloud, supporting optimal decision making; and a Calendar-based Data Storage Model to reduce the storage required for cloud metric data and increase analysis performance. A proactive response to cloud events is generated based on statistical analysis of historical metrics and predicted usage. The architecture, functional components and operation management strategies are described. A prototype implementation of the proposed architecture was deployed as a service on the OpenStack. The effectiveness and usability of the proposed proactive operation management solution has been comprehensively evaluated using a simulated private cloud with dynamic workloads.

    Automatic deployment and reproducibility of workflow on the Cloud using container virtualization

    Get PDF
    PhD ThesisCloud computing is a service-oriented approach to distributed computing that has many attractive features, including on-demand access to large compute resources. One type of cloud applications are scientific work ows, which are playing an increasingly important role in building applications from heterogeneous components. Work ows are increasingly used in science as a means to capture, share, and publish computational analysis. Clouds can offer a number of benefits to work ow systems, including the dynamic provisioning of the resources needed for computation and storage, which has the potential to dramatically increase the ability to quickly extract new results from the huge amounts of data now being collected. However, there are increasing number of Cloud computing platforms, each with different functionality and interfaces. It therefore becomes increasingly challenging to de ne work ows in a portable way so that they can be run reliably on different clouds. As a consequence, work ow developers face the problem of deciding which Cloud to select and - more importantly for the long-term - how to avoid vendor lock-in. A further issue that has arisen with work ows is that it is common for them to stop being executable a relatively short time after they were created. This can be due to the external resources required to execute a work ow - such as data and services - becoming unavailable. It can also be caused by changes in the execution environment on which the work ow depends, such as changes to a library causing an error when a work ow service is executed. This "work ow decay" issue is recognised as an impediment to the reuse of work ows and the reproducibility of their results. It is becoming a major problem, as the reproducibility of science is increasingly dependent on the reproducibility of scientific work ows. In this thesis we presented new solutions to address these challenges. We propose a new approach to work ow modelling that offers a portable and re-usable description of the work ow using the TOSCA specification language. Our approach addresses portability by allowing work ow components to be systematically specifed and automatically - v - deployed on a range of clouds, or in local computing environments, using container virtualisation techniques. To address the issues of reproducibility and work ow decay, our modelling and deployment approach has also been integrated with source control and container management techniques to create a new framework that e ciently supports dynamic work ow deployment, (re-)execution and reproducibility. To improve deployment performance, we extend the framework with number of new optimisation techniques, and evaluate their effect on a range of real and synthetic work ows.Ministry of Higher Education and Scientific Research in Iraq and Mosul Universit

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Trusted resource allocation in volunteer edge-cloud computing for scientific applications

    Get PDF
    Data-intensive science applications in fields such as e.g., bioinformatics, health sciences, and material discovery are becoming increasingly dynamic and demanding with resource requirements. Researchers using these applications which are based on advanced scientific workflows frequently require a diverse set of resources that are often not available within private servers or a single Cloud Service Provider (CSP). For example, a user working with Precision Medicine applications would prefer only those CSPs who follow guidelines from HIPAA (Health Insurance Portability and Accountability Act) for implementing their data services and might want services from other CSPs for economic viability. With the generation of more and more data these workflows often require deployment and dynamic scaling of multi-cloud resources in an efficient and high-performance manner (e.g., quick setup, reduced computation time, and increased application throughput). At the same time, users seek to minimize the costs of configuring the related multi-cloud resources. While performance and cost are among the key factors to decide upon CSP resource selection, the scientific workflows often process proprietary/confidential data that introduces additional constraints of security postures. Thus, users have to make an informed decision on the selection of resources that are most suited for their applications while trading off between the key factors of resource selection which are performance, agility, cost, and security (PACS). Furthermore, even with the most efficient resource allocation across multi-cloud, the cost to solution might not be economical for all users which have led to the development of new paradigms of computing such as volunteer computing where users utilize volunteered cyber resources to meet their computing requirements. For economical and readily available resources, it is essential that such volunteered resources can integrate well with cloud resources for providing the most efficient computing infrastructure for users. In this dissertation, individual stages such as user requirement collection, user's resource preferences, resource brokering and task scheduling, in lifecycle of resource brokering for users are tackled. For collection of user requirements, a novel approach through an iterative design interface is proposed. In addition, fuzzy interference-based approach is proposed to capture users' biases and expertise for guiding their resource selection for their applications. The results showed improvement in performance i.e. time to execute in 98 percent of the studied applications. The data collected on user's requirements and preferences is later used by optimizer engine and machine learning algorithms for resource brokering. For resource brokering, a new integer linear programming based solution (OnTimeURB) is proposed which creates multi-cloud template solutions for resource allocation while also optimizing performance, agility, cost, and security. The solution was further improved by the addition of a machine learning model based on naive bayes classifier which captures the true QoS of cloud resources for guiding template solution creation. The proposed solution was able to improve the time to execute for as much as 96 percent of the largest applications. As discussed above, to fulfill necessity of economical computing resources, a new paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which reduces cost and improves performance and security by creating edge clusters comprising of volunteered computing resources close to users. The initial results have shown improved time of execution for application workflows against state-of-the-art solutions while utilizing only the most secure VEC resources. Consequently, we have utilized reinforcement learning based solutions to characterize volunteered resources for their availability and flexibility towards implementation of security policies. The characterization of volunteered resources facilitates efficient allocation of resources and scheduling of workflows tasks which improves performance and throughput of workflow executions. VEC architecture is further validated with state-of-the-art bioinformatics workflows and manufacturing workflows.Includes bibliographical references

    Model-Driven Machine Learning for Predictive Cloud Auto-scaling

    Get PDF
    Cloud provisioning of resources requires continuous monitoring and analysis of the workload on virtual computing resources. However, cloud providers offer the rule-based and schedule-based auto-scaling service. Auto-scaling is a cloud system that reacts to real-time metrics and adjusts service instances based on predefined scaling policies. The challenge of this reactive approach to auto-scaling is to cope with fluctuating load changes. For data management applications, the workload is changing and needs forecasting on historical trends and integrating with auto-scaling service. We aim to discover changes and patterns on multi metrics of resource usages of CPU, memory, and networking. To address this problem, the learning-and-inference based prediction has been adopted to predict the needs prior to provision action. First, we develop a novel machine learning-based auto-scaling process that covers the technique of learning multiple metrics for cloud auto-scaling decision. This technique is used for continuous model training and workload forecasting. Furthermore, the result of workload forecasting triggers the auto-scaling process automatically. Also, we build the serverless functions of this machine learning-based process, including monitoring, machine learning, model selection, scheduling as microservices and orchestrating these independent services by platform, language orthogonal APIs. We demonstrate this architectural implementation on AWS and Microsoft Azure and show the prediction results from machine learning on-the-fly. Results show significant cost reductions by our proposed solution compared to a general threshold-based auto-scaling. Still, there is a need to integrate the machine learning prediction with the auto-scaling system. So, the deployment effort of devising additional machine learning components is increased. So, we present a model-driven framework that defines first-class entities to represent machine learning algorithm types, inputs, outputs, parameters, and evaluation scores. We set up rules for validating machine learning entities. The connection between the machine learning and auto-scaling system is presented by two levels of abstraction models, namely cloud platform independent model and cloud platform specific model. We automate the model-to-model transformation and model-to-deployment transformation. We integrate model-driven with a DevOps approach to make models deployable and executable on a target cloud platform. We demonstrate our method with scaling configuration and deployment of two open source benchmark applications - Dell DVD store and Netflix (NDBench) on three cloud platforms, AWS, Azure, and Rackspace. The evaluation shows our inference-based auto-scaling with model-driven reduces approximately 27% of deployment effort compared to the ordinary auto-scaling
    • …
    corecore