39 research outputs found

    Internet of Things (IoT): Societal Challenges & Scientific Research Fields for IoT

    Get PDF
    International audienceJust as the Internet radically reshaped society, the Internet of Things (IoT) willhave an impact on all areas of human life: from our homes, vehicles, workplacesand factories, to our cities and towns, agriculture and healthcare systems. It willalso affect all levels of society (individuals, companies and state-level), from urbanto rural and the natural world beyond. This makes it essential to have a properunderstanding of IoT and the challenges which relate to it. The primary aims ofthis document are to (i) determine the scope of IoT, its origins, current developments and perspectives, and (ii) identify the main societal, technical and scientific challenges linked to IoT.It seems inevitable that IoT will become increasingly omnipresent. Indeed, itis set to penetrate every aspect of all of our lives, connecting everything (billionsof new heterogeneous machines communicating with each other) and measuringeverything: from the collective action we take at a global level, right down to oursmallest individual physiological signals, in real-time. This is a double-edged sword,in that it simultaneously gives people cause for hope (automation, ­optimisation,innovative new functionalities etc.) and cause for fear (surveillance, dependency,cyberattacks, etc.). Given the ever-evolving nature of the IoT, new challenges linked to privacy, transparency, security appear, while new civil and industrialresponsibilities are starting to emerge.IoT is centred around an increasingly complex set of interlinked concepts andembedded technologies. At an industrial level, this growing complexity is makingthe idea of having full control over all components of IoT increasingly difficult, oreven infeasible. However, as a society, we must get to grips with the technologicalfoundations of IoT. One challenge for education will therefore be to graduallyincrease awareness of IoT, both in order to protect individuals’ sovereignty andfree will, and to initiate the training of our future scientists and technicians. Apublic research institute such as Inria can contribute towards understandingand explaining the technological foundations of IoT, in addition to preservingsovereignty in Europe.IoT will inevitably increase dependency on certain types of embeddedt ­ echno­logy. It is hence necessary to identify the new risks that entail, and todevise new strategies in order to take full advantage of IoT, while minimising theserisks. Similarly to the situation in other domains where one must continually seekto preserve ethics without hindering innovation, creating a legal framework forIoT is both necessary and challenging. It nevertheless seems clear already thatthe best way of facing up to industrial giants or superpowers is to take action atthe EU level, as shown by recent examples such as GDPR. Furthermore, given thegrowing influence of technological standards on society, playing an active rolein the process of standardising IoT technology is essential. Open standards andopen source – conceived as a common public good – will be pivotal for IoT, justas they have been for the Internet. Last but not least, massive use of IoT can helpbetter capture and understand the environmental challenges we are ­currentlyfacing – it is also expected IoT will help to mitigate these challenges. The goals inthis context are not only to reduce the quantities of natural resources consumedby IoT (for production, deployment, maintenance and recycling). We must alsoaim to more accurately evaluate the overall net benefit of IoT on the environment,at a global level. This requires determining and subtracting IoT’s environmentalcosts from its (measured) benefits, which is currently a challenge. The growingimpact of IoT underscores the importance of remaining at the cutting edge whenit comes to scientific research and technological development. This documenttherefore aims to (i) highlight the wide range of research fields which are fundamental to IoT, and(ii) take stock of current and future research problems in each of these fields. A number of links are made throughout the document to contributionsmade by Inria. These contributions are, by their nature, diverse (basic and appliedresearch, open source software, startup incubation) and concern the majority ofresearch fields on which IoT is based

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    dspace 6.0 manual

    Get PDF

    The potential use of smart cards in vehicle management with particular reference to the situation in Western Australia

    Get PDF
    Vehicle management may be considered to consist of traffic management, usage control, maintenance, and security. Various regulatory authorities undertake the first aspect, fleet managers will be concerned with all aspects, and owner-drivers will be interested mainly in maintenance and security. Car theft poses a universal security problem. Personalisation, including navigational assistance, might be achieved as a by-product of an improved management system. Authorities and fleet managers may find smartcards to be key components of an improved system, but owners may feel that the need for improved security does not justify its cost. This thesis seeks to determine whether smartcards may be used to personalise vehicles in order to improve vehicle management within a forseeable time and suggest when it might happen. In the process four broad questions are addressed. • First, what improvements in technology are needed to make any improved scheme using smartcards practicable, and what can be expected in the near future? • Second, what problems and difficulties may impede the development of improved management? • Third, what non-vehicle applications might create an environment in which a viable scheme could emerge? • Finally, is there a perceived need for improved vehicle management? The method involved a literature search, the issue of questionnaires to owner drivers and fleet managers, discussions with fleet managers, the preparation of data-flow and state diagrams, and the construction of a simulation of a possible security approach. The study concludes that although vehicle personalisation is possible- and desirable it is unlikely to occur within the next decade because the environment needed to make it practicable will not emerge until a number of commercial and standardisation problems that obstruct all smartcard applications have been solved

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Battery Systems and Energy Storage beyond 2020

    Get PDF
    Currently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions

    Principles of Massively Parallel Sequencing for Engineering and Characterizing Gene Delivery

    Get PDF
    The advent of massively parallel sequencing and synthesis technologies have ushered in a new paradigm of biology, where high throughput screening of billions of nucleid acid molecules and production of libraries of millions of genetic mutants are now routine in labs and clinics. During my Ph.D., I worked to develop data analysis and experimental methods that take advantage of the scale of this data, while making the minimal assumptions necessary for deriving value from their application. My Ph.D. work began with the development of software and principles for analyzing deep mutational scanning data of libraries of engineered AAV capsids. By looking at not only the top variant in a round of directed evolution, but instead a broad distribution of the variants and their phenotypes, we were able to identify AAV variants with enhanced ability to transduce specific cells in the brain after intravenous injection. I then shifted to better understand the phenotypic profile of these engineered variants. To that end, I turned to single-cell RNA sequencing to seek to identify, with high resolution, the delivery profile of these variants in all cell types present in the cortex of a mouse brain. I began by developing infrastructure and tools for dealing with the data analysis demands of these experiments. Then, by delivering an engineered variant to the animal, I was able to use the single-cell RNA sequencing profile, coupled with a sequencing readout of the delivered genetic cargo present in each cell type, to define the variant’s tropism across the full spectrum of cell types in a single step. To increase the throughput of this experimental paradigm, I then worked to develop a multiplexing strategy for delivering up to 7 engineered variants in a single animal, and obtain the same high resolution readout for each variant in a single experiment. Finally, to take a step towards translation to human diagnostics, I leveraged the tools I built for scaling single-cell RNA sequencing studies and worked to develop a protocol for obtaining single-cell immune profiles of low volumes of self-collected blood. This study enabled repeat sampling in a short period of time, and revealed an incredible richness in individual variability and time-of-day dependence of human immune gene expression. Together, my Ph.D. work provides strategies for employing massively parallel sequencing and synthesis for new biological applications, and builds towards a future paradigm where personalized, high-resolution sequencing might be coupled with modular, customized gene therapy delivery.</p

    The role of business model innovation in transitioning ULEVs to market

    Get PDF
    Abstract This thesis explores whether ‘business model innovation’ could hold the key to advancing the ultra-low and zero carbon vehicle industry in the United Kingdom. This thesis presents a critical comparison of two case studies drawn from qualitative research conducted with a broad cross-section of UK vehicle manufacturers (VMs) that are interested in introducing zero carbon vehicles to the marketplace. The two cases, looking at large established producers of vehicles with trans-national presence (herein termed TNC/MNC VMs) and smaller producers (herein termed SME VMs). The two cases consist of a number of grouped embedded cases focusing on the activities of vehicle producers that are in the process of introducing Ultra-Low Emission Vehicles (ULEVs) to the UK marketplace. These cases are constructed and informed by both primary research, semi-structured interviews conducted with representatives of these VMs, secondary analysis of interviews conducted with VM representatives and industry commentators and documentary analysis of contemporary sources and industry commentary. The thesis is framed within a broader academic debate regarding the nature of achieving socio-technical transitions. Within this frame of reference, particular attention is paid to the role of large incumbents vs. new start-up insurgents in bringing innovative technologies to the marketplace; innovative technologies being seen as a key component of a transition to a more sustainable world. In comparing the business models of large, well-established vehicle manufacturers, with smaller, newer, SME providers the ontology of Business Models developed by Osterwalder & Pigneur (2002) is used to interrogate, analyse and make comparisons between the business models of a range of companies that are very dissimilar in nature. Context is crucial to understanding the detail of case studies; as such, the thesis is also informed by the perspectives, gained through interviews, of a number of industry commentators, representatives of government organisations and automotive trade bodies. ~ xxviii ~ This thesis set out to explore a number of research themes and the contributions to knowledge that this thesis has made are: Establishing a theoretical linkage between Geels (2006) multi-level perspective of transitions literature and Osterwalder & Pigneur’s (2002) business model ontology. By bringing these two powerful tools together, it is proposed that a complimentary analysis of the business model on the micro level, embedded within an overall socio-technical transition at the macro level can be made. Furthermore, through an empirical analysis of business models in the car industry, a range of business model components, new directions for business models and “complementary” ancillary business models that support the introduction of ULEVs has been identified. Disappointingly, whilst some observation are made about the early stages of transitions, the slow uptake of ULEVs in the marketplace has shown that the incumbent regime is still reistant to transition – and no concrete transition mechanisms can be identified. There are however a collection of observations about the early stages of socio-technical transitions. The thesis also contributes to the ongoing debate about the tensions between incumbent and insurgent business contributing to the ongoing characterisation of the competitive forces that exist between them. Another important contribution to the business models literature, is a discussion of the role of product, process and business model design. Very recent work by Meertens, Starreveld, Iacob, & Nieuwenhuis (2013) has also explored this issue, however, this work takes a different perspective informed by the empirical data within the case studies
    corecore