102 research outputs found

    Efficiently Manifesting Asynchronous Programming Errors in Android Apps

    Full text link
    Android, the #1 mobile app framework, enforces the single-GUI-thread model, in which a single UI thread manages GUI rendering and event dispatching. Due to this model, it is vital to avoid blocking the UI thread for responsiveness. One common practice is to offload long-running tasks into async threads. To achieve this, Android provides various async programming constructs, and leaves developers themselves to obey the rules implied by the model. However, as our study reveals, more than 25% apps violate these rules and introduce hard-to-detect, fail-stop errors, which we term as aysnc programming errors (APEs). To this end, this paper introduces APEChecker, a technique to automatically and efficiently manifest APEs. The key idea is to characterize APEs as specific fault patterns, and synergistically combine static analysis and dynamic UI exploration to detect and verify such errors. Among the 40 real-world Android apps, APEChecker unveils and processes 61 APEs, of which 51 are confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more APEs than the state-of-art testing tools (Monkey, Sapienz and Stoat), and reduces testing time from half an hour to a few minutes. On a specific type of APEs, APEChecker confirms 5X more errors than the data race detection tool, EventRacer, with very few false alarms

    Automated Testing of Android Apps: A Systematic Literature Review

    Get PDF
    Automated testing of Android apps is essential for app users, app developers and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development model, the literature has proposed various testing approaches for ensuring that not only functional requirements but also non-functional requirements are satisfied. In this paper, we aim at providing a clear overview of the state-of-the-art works around the topic of Android app testing, in an attempt to highlight the main trends, pinpoint the main methodologies applied and enumerate the challenges faced by the Android testing approaches as well as the directions where the community effort is still needed. To this end, we conduct a Systematic Literature Review (SLR) during which we eventually identified 103 relevant research papers published in leading conferences and journals until 2016. Our thorough examination of the relevant literature has led to several findings and highlighted the challenges that Android testing researchers should strive to address in the future. After that, we further propose a few concrete research directions where testing approaches are needed to solve recurrent issues in app updates, continuous increases of app sizes, as well as the Android ecosystem fragmentation

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio

    Automatic Detection, Validation and Repair of Race Conditions in Interrupt-Driven Embedded Software

    Full text link
    Interrupt-driven programs are widely deployed in safety-critical embedded systems to perform hardware and resource dependent data operation tasks. The frequent use of interrupts in these systems can cause race conditions to occur due to interactions between application tasks and interrupt handlers (or two interrupt handlers). Numerous program analysis and testing techniques have been proposed to detect races in multithreaded programs. Little work, however, has addressed race condition problems related to hardware interrupts. In this paper, we present SDRacer, an automated framework that can detect, validate and repair race conditions in interrupt-driven embedded software. It uses a combination of static analysis and symbolic execution to generate input data for exercising the potential races. It then employs virtual platforms to dynamically validate these races by forcing the interrupts to occur at the potential racing points. Finally, it provides repair candidates to eliminate the detected races. We evaluate SDRacer on nine real-world embedded programs written in C language. The results show that SDRacer can precisely detect and successfully fix race conditions.Comment: This is a draft version of the published paper. Ke Wang provides suggestions for improving the paper and README of the GitHub rep

    Exposing concurrency failures: a comprehensive survey of the state of the art and a novel approach to reproduce field failures

    Get PDF
    With the rapid advance of multi-core and distributed architectures, concurrent systems are becoming more and more popular. Concurrent systems are extremely hard to develop and validate, as their overall behavior depends on the non-deterministic interleaving of the execution flows that comprise the system. Wrong and unexpected interleavings may lead to concurrency faults that are extremely hard to avoid, detect, and fix due to their non-deterministic nature. This thesis addresses the problem of exposing concurrency failures. Exposing concurrency failures is a crucial activity to locate and fix the related fault and amounts to determine both a test case and an interleaving that trigger the failure. Given the high cost of manually identifying a failure-inducing test case and interleaving among the infinite number of inputs and interleavings of the system, the problem of automatically exposing concurrency failures has been studied by researchers since the late seventies and is still a hot research topic. This thesis advances the research in exposing concurrency failures by proposing two main contributions. The first contribution is a comprehensive survey and taxonomy of the state-of-the-art techniques for exposing concurrency failures. The taxonomy and survey provide a framework that captures the key features of the existing techniques, identify a set of classification criteria to review and compare them, and highlight their strengths and weaknesses, leading to a thorough assessment of the field and paving the road for future progresses. The second contribution of this thesis is a technique to automatically expose and reproduce concurrency field failure. One of the main findings of our survey is that automatically reproducing concurrency field failures is still an open problem, as the few techniques that have been proposed rely on information that may be hard to collect, and identify failure-inducing interleavings but do not synthesize failure-inducing test cases. We propose a technique that advances over state- of-the-art approaches by relying on information that is easily obtainable and by automatically identifying both a failure- inducing test case and interleaving. We empirically demonstrate the effectiveness of our approach on a benchmark of real concurrency failures taken from different popular code bases

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Enabling aggressive compiler optimization for the mobile environment

    Get PDF
    Aggressive code optimization on the mobile environment is a difficult endeavor. Billions of users rely on mobile devices for their daily computing tasks. Yet, they mostly run poorly optimized code, under-utilizing their already limited processing and energy resources. Existing optimization approaches, like iterative compilation, perform well in other domains but fall short on the mobile environment. They either rely on representative inputs that are hard to reconstruct, or expose users to slowdowns and crashes. An ideal solution must be able to perform an optimization search by repeatedly evaluating different optimization decisions on the same input. That input should be representative of actual user usage without requiring developers to artificially create it. Finally, users should never be exposed to slow or crashing evaluations, a quite common side-effect of iterative compilation. This thesis presents a novel approach with all above in mind, bringing aggressive code optimization to the mobile environment. With a transparent capture mechanism, real user inputs can be stored. This mechanism is infrequently invoked and remains unnoticeable from the users. A single capture is enough to enable offline, input-driven code optimization. It supports C functions as well as code regions of interactive Android applications. It allows controlling the timing and frequency of captures, it bails out on imminent high-impact runtime events, and excludes from captures some immutable data. A replay-based evaluation mechanism is able to repeatedly restore a captured input while changing the underlying code. For C programs, it employs compile and link-time strategies to consistently work despite code transformations. For Android apps, a novel mechanism was developed, able to replay using different code types. These are the original Android-compiled code, interpretation, and LLVM-generated code. Additionally, it works well even in the presence of memory-shuffling security mechanisms. Capture and replay is fused into an iterative compilation system that uses offline, replay-based evaluations. Initially, real inputs are captured online, without noticeably affecting the users. For C and interactive apps, captures required on average 2ms and 15ms respectively. Then, an optimization search is performed by repeatedly replaying the inputs using different code transformations. As this happens offline, any crashing or erroneous executions are not affecting the users. C programs became 29% faster using a random search, while interactive apps became 44% faster using a genetic algorithm and a novel Android backend based on LLVM. Finally, with crowd-sourcing, the offline evaluation effort was significantly accelerated. Specifically, for the user with the highest workload the search accelerated by 7 times

    Misalignment - the core challenge in integrating security and privacy requirements into mobile banking application development

    Get PDF
    This study identifies and explores the core challenge faced when integrating security and privacy requirements into the mobile banking software development life cycle. Studies on key issues in Information Systems (IS) have been on-going for several decades, with security and privacy moving up the ranks of top issues in IS. Security and privacy requirements can be added into the mobile application development processes by practising secure coding, and/or, by adding a third party security tool. This study gathered data from a single case study; it employs grounded theory methodology to reveal misalignment as the core challenge to integrating security and privacy requirements into mobile banking application development. The forms of misalignment are between security and privacy requirements and (1) external entities, (2) roles, (3) skills and (4) system requirements. The nature of the mobile application domain results in the misalignment forms identified above. Some of the findings indicate the need for further research. Research indicates that mobile application development follows agile methods for development. Agile methods have been compared with Complex Adaptive Systems (CAS). For this reason, research in IS could benefit from studies that focus on CAS as a theory to provide a better explanation on the misalignment issues in mobile application development
    • 

    corecore