14,789 research outputs found

    Automatically detecting asymmetric running using time and frequency domain features

    Get PDF
    Human motion analysis technologies have been widely employed to identify injury determining factors and provide objective and quantitative feedback to athletes to help prevent injury. However, most of these technologies are: ex- pensive, restricted to laboratory environments, and can require significant post processing. This reduces their ecological validity, adoption and usefulness. In this paper, we present a novel wearable inertial sensor framework to accurately distinguish between symmetrical and asymmetrical running patterns in an unconstrained environment. The framework can automatically classify symmetry/asymmetry using Short Time Fourier Trans- form (STFT) and other time domain features in conjunction with a customized Random Forest classifier. The accuracy of the designed framework is up to 94% using 3-D accelerometer and 3-D gyroscope data from a sensor node attached on the upper back of a subject. The upper back inertial sensors data were then down-sampled by a factor of 4 to simulate utilizing low-cost inertial sensors whilst also facilitating a decrease of the computational cost to achieve near real-time application. We conclude that the proposed framework can potentially pave the way for employing low-cost sensors, such as those used in smartphones, attached on the upper back to provide injury related and performance feedback in real-time in unconstrained environments

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    Feature extraction from ear-worn sensor data for gait analysis

    Get PDF
    Gait analysis has a significant role in assessing human's walking pattern. It is generally used in sports science for understanding body mechanics, and it is also used to monitor patients' neuro-disorder related gait abnormalities. Traditional marker-based systems are well known for tracking gait parameters for gait analysis, however, it requires long set up time therefore very difficult to be applied in everyday realtime monitoring. Nowadays, there is ever growing of interest in developing portable devices and their supporting software with novel algorithms for gait pattern analysis. The aim of this research is to investigate the possibilities of novel gait pattern detection algorithms for accelerometer-based sensors. In particular, we have used e-AR sensor, an ear-worn sensor which registers body motion via its embedded 3-D accelerom-eter. Gait data was given semantic annotation using pressure mat as well as real-time video recording. Important time stamps within a gait cycle, which are essential for extracting meaningful gait parameters, were identified. Furthermore, advanced signal processing algorithm was applied to perform automatic feature extraction by signal decomposition and reconstruction. Analysis on real-word data has demonstrated the potential for an accelerometer-based sensor system and its ability to extract of meaningful gait parameters

    Automatic Detection of Malware-Generated Domains with Recurrent Neural Models

    Get PDF
    Modern malware families often rely on domain-generation algorithms (DGAs) to determine rendezvous points to their command-and-control server. Traditional defence strategies (such as blacklisting domains or IP addresses) are inadequate against such techniques due to the large and continuously changing list of domains produced by these algorithms. This paper demonstrates that a machine learning approach based on recurrent neural networks is able to detect domain names generated by DGAs with high precision. The neural models are estimated on a large training set of domains generated by various malwares. Experimental results show that this data-driven approach can detect malware-generated domain names with a F_1 score of 0.971. To put it differently, the model can automatically detect 93 % of malware-generated domain names for a false positive rate of 1:100.Comment: Submitted to NISK 201

    Taxonomy Induction using Hypernym Subsequences

    Get PDF
    We propose a novel, semi-supervised approach towards domain taxonomy induction from an input vocabulary of seed terms. Unlike all previous approaches, which typically extract direct hypernym edges for terms, our approach utilizes a novel probabilistic framework to extract hypernym subsequences. Taxonomy induction from extracted subsequences is cast as an instance of the minimumcost flow problem on a carefully designed directed graph. Through experiments, we demonstrate that our approach outperforms stateof- the-art taxonomy induction approaches across four languages. Importantly, we also show that our approach is robust to the presence of noise in the input vocabulary. To the best of our knowledge, no previous approaches have been empirically proven to manifest noise-robustness in the input vocabulary
    corecore