3,600 research outputs found

    Component-aware Orchestration of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes

    Full text link
    Enterprise IT is currently facing the challenge of coordinating the management of complex, multi-component applications across heterogeneous cloud platforms. Containers and container orchestrators provide a valuable solution to deploy multi-component applications over cloud platforms, by coupling the lifecycle of each application component to that of its hosting container. We hereby propose a solution for going beyond such a coupling, based on the OASIS standard TOSCA and on Docker. We indeed propose a novel approach for deploying multi-component applications on top of existing container orchestrators, which allows to manage each component independently from the container used to run it. We also present prototype tools implementing our approach, and we show how we effectively exploited them to carry out a concrete case study

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    Achieving Adaptation Through Live Virtual Machine Migration in Two-Tier Clouds

    Get PDF
    This thesis presents a model-driven approach for application deployment and management in two-tier heterogeneous cloud environments. For application deployment, we introduce the architecture, the services and the domain specific language that abstract common features of multi-cloud deployments. By leveraging the architecture and the language, application deployers author a deployment model that captures the high-level structure of the application. The deployment model is then translated into deployment workflows on specific clouds. As a use case, we introduce a live VM migration framework that maintains the application quality of services through VM migrations across two tier-clouds. The proposed framework can monitor the performance of the applications and their underlying infrastructure and plan and executes VM migrations to eliminate hotspots in a datacenter. We evaluate both the application deployment architecture and the live migration on public clouds

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi
    • …
    corecore