1,573 research outputs found

    Automatically calibrating the viewing direction of optic-flow sensors

    Get PDF
    Because of their low weight, cost and energy consumption, optic-flow sensors attract growing interest in robotics for tasks such as self-motion estimation or depth measurement. Most applications require a large number of these sensors, which involves a fair amount of calibration work for each setup. In particular, the viewing direction of each sensor has to be measured for proper operation. This task is often cumbersome and prone to errors, and has to be carried out every time the setup is slightly modified. This paper proposes an algorithm for viewing direction calibration relying on rate gyroscope readings and a recursive weighted linear least square estimation of the rotation matrix elements. The method only requires the user to realize random rotational motions of its setup by hand. The algorithm provides hints about the current precision of the estimation and what motions should be performed to improve it. To assess the validity of the method, tests were performed on an experimental setup and the results compared to a precise manual calibration. The repeatability of the gyroscope-based calibration process reached ±1.7° per axis

    Optic-Flow Based Control of a 46g Quadrotor

    Get PDF
    We aim at developing autonomous miniature hov- ering flying robots capable of navigating in unstructured GPS- denied environments. A major challenge is the miniaturization of the embedded sensors and processors allowing such platforms to fly autonomously. In this paper, we propose a novel ego-motion estimation algorithm for hovering robots equipped with inertial and optic-flow sensors that runs in real- time on a microcontroller. Unlike many vision-based methods, this algorithm does not rely on feature tracking, structure estimation, additional distance sensors or assumptions about the environment. Key to this method is the introduction of the translational optic-flow direction constraint (TOFDC), which does not use the optic-flow scale, but only its direction to correct for inertial sensor drift during changes of direction. This solution requires comparatively much simpler electronics and sensors and works in environments of any geometries. We demonstrate the implementation of this algorithm on a miniature 46g quadrotor for closed-loop position control

    The AirBurr: A Flying Robot That Can Exploit Collisions

    Get PDF
    Research made over the past decade shows the use of increasingly complex methods and heavy platforms to achieve autonomous flight in cluttered environments. However, efficient behaviors can be found in nature where limited sensing is used, such as in insects progressing toward a light at night. Interestingly, their success is based on their ability to recover from the numerous collisions happening along their imperfect flight path. The goal of the AirBurr project is to take inspiration from these insects and develop a new class of flying robots that can recover from collisions and even exploit them. Such robots are designed to be robust to crashes and can take-off again without human intervention. They navigate in a reactive way and, unlike conventional approaches, they don't need heavy modelling in order to fly autonomously. We believe that this new paradigm will bring flying robots out of the laboratory environment and allow them to tackle unstructured, cluttered environments. This paper aims at presenting the vision of the AirBurr project, as well as the latest results in the design of a platform capable of sustaining collisions and self-recovering after crashes

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Rotorcraft Blade Angle Calibration Methods

    Get PDF
    The most vital system of a rotorcraft is the rotor system due to its effects on the overall flight quality of the vehicle. Therefore, it is of importance to be able to accurately determine blade position during flight so that fine adjustments can be made to ensure a safe and efficient flight. In this study, a current calibration method focusing on the pitch, flap, and lead-lag blade angles is analyzed and found to have larger than acceptable error associated with the sensor calibrations. A literature review is conducted which reveals four novel methods that can potentially increase the accuracy of the sensor calibrations. An uncertainty analysis is conducted aiding in the decision of which of the four methods would best improve the calibration accuracy. The results conclude that a simpler method can be applied and calibration times can greatly be reduced while increasing the accuracy of the calibration. Finally, a new calibration method is proposed utilizing the newly chosen sensor that can be later implemented into the system

    NASA Tech Briefs, September 2006

    Get PDF
    Topics covered include: Improving Thermomechanical Properties of SiC/SiC Composites; Aerogel/Particle Composites for Thermoelectric Devices; Patches for Repairing Ceramics and Ceramic- Matrix Composites; Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings; An Alternative for Emergency Preemption of Traffic Lights; Vehicle Transponder for Preemption of Traffic Lights; Automated Announcements of Approaching Emergency Vehicles; Intersection Monitor for Traffic-Light-Preemption System; Full-Duplex Digital Communication on a Single Laser Beam; Stabilizing Microwave Frequency of a Photonic Oscillator; Microwave Oscillators Based on Nonlinear WGM Resonators; Pointing Reference Scheme for Free-Space Optical Communications Systems; High-Level Performance Modeling of SAR Systems; Spectral Analysis Tool 6.2 for Windows; Multi-Platform Avionics Simulator; Silicon-Based Optical Modulator with Ferroelectric Layer; Multiplexing Transducers Based on Tunnel-Diode Oscillators; Scheduling with Automated Resolution of Conflicts; Symbolic Constraint Maintenance Grid; Discerning Trends in Performance Across Multiple Events; Magnetic Field Solver; Computing for Aiming a Spaceborne Bistatic- Radar Transmitter; 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells; Probabilistic Prediction of Lifetimes of Ceramic Parts; STRANAL-PMC Version 2.0; Micromechanics and Piezo Enhancements of HyperSizer; Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses; Tilt/Tip/Piston Manipulator with Base-Mounted Actuators; Measurement of Model Noise in a Hard-Wall Wind Tunnel; Loci-STREAM Version 0.9; The Synergistic Engineering Environment; Reconfigurable Software for Controlling Formation Flying; More About the Tetrahedral Unstructured Software System; Computing Flows Using Chimera and Unstructured Grids; Avoiding Obstructions in Aiming a High-Gain Antenna; Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft; Tracking Positions and Attitudes of Mars Rovers; Stochastic Evolutionary Algorithms for Planning Robot Paths; Compressible Flow Toolbox; Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines; General Flow-Solver Code for Turbomachinery Applications; Code for Multiblock CFD and Heat-Transfer Computations; Rotating-Pump Design Code; Covering a Crucible with Metal Containing Channels; Repairing Fractured Bones by Use of Bioabsorbable Composites; Kalman Filter for Calibrating a Telescope Focal Plane; Electronic Absolute Cartesian Autocollimator; Fiber-Optic Gratings for Lidar Measurements of Water Vapor; Simulating Responses of Gravitational-Wave Instrumentation; SOFTC: A Software Correlator for VLBI; Progress in Computational Simulation of Earthquakes; Database of Properties of Meteors; Computing Spacecraft Solar-Cell Damage by Charged Particles; Thermal Model of a Current-Carrying Wire in a Vacuum; Program for Analyzing Flows in a Complex Network; Program Predicts Performance of Optical Parametric Oscillators; Processing TES Level-1B Data; Automated Camera Calibration; Tracking the Martian CO2 Polar Ice Caps in Infrared Images; Processing TES Level-2 Data; SmaggIce Version 1.8; Solving the Swath Segment Selection Problem; The Spatial Standard Observer; Less-Complex Method of Classifying MPSK; Improvement in Recursive Hierarchical Segmentation of Data; Using Heaps in Recursive Hierarchical Segmentation of Data; Tool for Statistical Analysis and Display of Landing Sites; Automated Assignment of Proposals to Reviewers; Array-Pattern-Match Compiler for Opportunistic Data Analysis; Pre-Processor for Compression of Multispectral Image Data; Compressing Image Data While Limiting the Effects of Data Losses; Flight Operations Analysis Tool; Improvement in Visual Target Tracking for a Mobile Robot; Software for Simulating Air Traffic; Automated Vectorization of Decision-Based Algorithms; Grayscale Optical Correlator Workbench; "One-Stop Shopping" for Ocean Remote-Sensing and Model Data; State Analysis Database Tool; Generating CAHV and CAHVOmages with Shadows in ROAMS; Improving UDP/IP Transmission Without Increasing Congestion; FORTRAN Versions of Reformulated HFGMC Codes; Program for Editing Spacecraft Command Sequences; Flight-Tested Prototype of BEAM Software; Mission Scenario Development Workbench; Marsviewer; Tool for Analysis and Reduction of Scientific Data; ASPEN Version 3.0; Secure Display of Space-Exploration Images; Digital Front End for Wide-Band VLBI Science Receiver; Multifunctional Tanks for Spacecraft; Lightweight, Segmented, Mostly Silicon Telescope Mirror; Assistant for Analyzing Tropical-Rain-Mapping Radar Data; and Anion-Intercalating Cathodes for High-Energy- Density Cells

    Polarization microscopy with the LC-PolScope

    Get PDF
    Author Posting. © The Author(s), 2003. This is the author's version of the work. It is posted here by permission of Cold Spring Harbor Laboratory Press for personal use, not for redistribution. The definitive version was published in Live Cell Imaging : A Laboratory Manual, edited by R. D. Goldman and D. L. Spector, :205-237. Cold Spring Harbor Laboratory Press, 2005. ISBN: 9780879696825.In the current chapter we describe the use of a new type of polarized light microscope which we started to develop at the Marine Biological Laboratory about ten years ago. The new “PolScope” is based on the traditional polarized light microscope and enhances it with the use of liquid- crystal devices and special image processing algorithms. The LC-PolScope measures polarization optical parameters in many specimen points simultaneously, in fast time intervals, and at the highest resolution of the light microscope. It rapidly generates a birefringence map whose pixel brightness is directly proportional to the local optical anisotropy, unaffected by the specimen orientation in the plane of view, as well as a map depicting the slow axis orientation of the birefringent regions. The basic LC-PolScope technology can be adapted to most research grade microscopes and is available commercially from Cambridge Research and Instrumentation (CRI, http://www.cri-inc.com) in Woburn, Massachusetts, under the trade name LC-PolScope.Financial support from the National Institute of General Medical Sciences and from the National Institute of Biomedical Imaging and Bioengineering through grants GM49210 and EB002045, respectively

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 19)

    Get PDF
    Abstracts are cited for 130 patents and patent applications introduced into the NASA scientific and technical information system during the period of January 1981 through July 1981. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
    • …
    corecore