344 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Automated Bug Removal for Software-Defined Networks

    Get PDF
    When debugging an SDN application, diagnosing the problem is merely the first step: the operator must still find a fix that solves the problem, without causing new problems elsewhere. However, most existing debuggers focus exclusively on diagnosis and offer the network operator little or no help with finding an effective fix. Finding a suitable fix is difficult because the number of candidates can be enormous. In this paper, we propose a step towards automated repair for SDN applications. Our approach consists of two elements. The first is a data structure that we call meta provenance, which can be used to efficiently find good candidate repairs. Meta provenance is inspired by the provenance concept from the database community; however, whereas standard provenance can only reason about changes to data, meta provenance can also reason about changes to programs. The second element is a system that can efficiently backtest a set of candidate repairs using historical data from the network. This is used to eliminate candidate repairs that do not work well, or that cause other problems. We have implemented a system that maintains meta provenance for SDNs, as well as a prototype debugger that uses the meta provenance to automatically suggest repairs. Results from several case studies show that, for problems of moderate complexity, our debugger can find high-quality repairs within one minute

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering

    Tacit knowledge elicitation process for industry 4.0

    Get PDF
    Manufacturers migrate their processes to Industry 4.0, which includes new technologies for improving productivity and efficiency of operations. One of the issues is capturing, recreating, and documenting the tacit knowledge of the aging workers. However, there are no systematic procedures to incorporate this knowledge into Enterprise Resource Planning systems and maintain a competitive advantage. This paper describes a solution proposal for a tacit knowledge elicitation process for capturing operational best practices of experienced workers in industrial domains based on a mix of algorithmic techniques and a cooperative game. We use domain ontologies for Industry 4.0 and reasoning techniques to discover and integrate new facts from textual sources into an Operational Knowledge Graph. We describe a concepts formation iterative process in a role game played by human and virtual agents through socialization and externalization for knowledge graph refinement. Ethical and societal concerns are discussed as well
    • …
    corecore