826 research outputs found

    Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification

    Get PDF
    This paper presents an ensemble-based scheme for nuclear transient identification. The approach adopted to construct the ensemble of classifiers is bagging; the novelty consists in using supervised fuzzy C-means (FCM) classifiers as base classifiers of the ensemble. The performance of the proposed classification scheme has been verified by comparison with a single supervised, evolutionary-optimized FCM classifier with respect of the task of classifying artificial datasets. The results obtained indicate that in the cases of datasets of large or very small sizes and/or complex decision boundaries, the bagging ensembles can improve classification accuracy. Then, the approach has been applied to the identification of simulated transients in the feedwater system of a boiling water reactor (BWR)

    Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification

    Get PDF
    This paper presents an ensemble-based scheme for nuclear transient identification. The approach adopted to construct the ensemble of classifiers is bagging; the novelty consists in using supervised fuzzy C-means (FCM) classifiers as base classifiers of the ensemble. The performance of the proposed classification scheme has been verified by comparison with a single supervised, evolutionary-optimized FCM classifier with respect of the task of classifying artificial datasets. The results obtained indicate that in the cases of datasets of large or very small sizes and/or complex decision boundaries, the bagging ensembles can improve classification accuracy. Then, the approach has been applied to the identification of simulated transients in the feedwater system of a boiling water reactor (BWR)

    Diagnosis of Parkinson’s Disease using Fuzzy C-Means Clustering and Pattern Recognition

    Get PDF
    Parkinson’s disease (PD) is a global public health problem of enormous dimension. In this study, we aimed to discriminate between healthy people and people with Parkinson’s disease (PD). Various studies revealed, that voice is one of the earliest indicator of PD, and for that reason, Parkinson dataset that contains biomedical voice of human is used. The main goal of this paper is to automatically detect whether the speech/voice of a person is affected by PD. We examined the performance of fuzzy c-means (FCM) clustering and pattern recognition methods on Parkinson’s disease dataset. The first method has the main aim to distinguish performance between two classes, when trying to differentiate between normal speaking persons and speakers with PD. This method could greatly be improved by classifying data first and then testing new data using these two patterns. Thus, second method used here is pattern recognition. The experimental results have demonstrated that the combination of the fuzzy c-means method and pattern recognition obtained promising results for the classification of PD

    Scalable Teacher Forcing Network for Semi-Supervised Large Scale Data Streams

    Full text link
    The large-scale data stream problem refers to high-speed information flow which cannot be processed in scalable manner under a traditional computing platform. This problem also imposes expensive labelling cost making the deployment of fully supervised algorithms unfeasible. On the other hand, the problem of semi-supervised large-scale data streams is little explored in the literature because most works are designed in the traditional single-node computing environments while also being fully supervised approaches. This paper offers Weakly Supervised Scalable Teacher Forcing Network (WeScatterNet) to cope with the scarcity of labelled samples and the large-scale data streams simultaneously. WeScatterNet is crafted under distributed computing platform of Apache Spark with a data-free model fusion strategy for model compression after parallel computing stage. It features an open network structure to address the global and local drift problems while integrating a data augmentation, annotation and auto-correction (DA3DA^3) method for handling partially labelled data streams. The performance of WeScatterNet is numerically evaluated in the six large-scale data stream problems with only 25%25\% label proportions. It shows highly competitive performance even if compared with fully supervised learners with 100%100\% label proportions.Comment: This paper has been accepted for publication in Information Science

    Feature selection for modular GA-based classification

    Get PDF
    Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative Importance Factor (RIF), is proposed to find less relevant features in the input domain of each class module. By removing these features, it is aimed to reduce the classification error and dimensionality of classification problems. Benchmark classification data sets are used to evaluate the proposed approach. The experiment results show that RIF can be used to find less relevant features and help achieve lower classification error with the feature space dimension reduced

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets
    corecore