326 research outputs found

    Enhancing Drug Overdose Mortality Surveillance through Natural Language Processing and Machine Learning

    Get PDF
    Epidemiological surveillance is key to monitoring and assessing the health of populations. Drug overdose surveillance has become an increasingly important part of public health practice as overdose morbidity and mortality has increased due in large part to the opioid crisis. Monitoring drug overdose mortality relies on death certificate data, which has several limitations including timeliness and the coding structure used to identify specific substances that caused death. These limitations stem from the need to analyze the free-text cause-of-death sections of the death certificate that are completed by the medical certifier during death investigation. Other fields, including clinical sciences, have utilized natural language processing (NLP) methods to gain insight from free-text data, but thus far, adoption of NLP methods in epidemiological surveillance has been limited. Through a narrative review of NLP methods currently used in public health surveillance and the integration of two NLP tasks, classification and named entity recognition, this dissertation enhances the capabilities of public health practitioners and researchers to perform drug overdose mortality surveillance. This dissertation advances both surveillance science and public health practice by integrating methods from bioinformatics into the surveillance pipeline which provides more timely and increased quality overdose mortality surveillance, which is essential to guiding effective public health response to the continuing drug overdose epidemic

    Statistical physics of vaccination

    Get PDF
    Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination–one of the most important preventive measures of modern times–is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research

    Spatial dependence of body mass index and exposure to night-time noise in the Geneva urban area

    Get PDF
    In this study, we calculated the night-noise mean (SonBase 2014, compatible with the EU Environmental Noise Directive) for the 5 classes obtained after computation of Local Indicators of Spatial Association (LISA; Anselin et al 1995) on the BMI of the participants in the Bus Santé study, a cohort managed by the Geneva University Hospitals (N=15’544; Guessous et al 2014). We expected the mean of dBs to be significantly higher in the group showing spatial dependence of high BMI values (high-high class). We ran an ANOVA and multiple T-tests to compare the dB means between LISA clusters. The approach was applied to the participants of the whole State Geneva cohort, and to a reduced set of individuals living in the urban environment of the municipality of Geneva only

    Preface

    Get PDF

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Healthy Living: The European Congress of Epidemiology, 2015

    Get PDF

    Volume 7 Full Text

    Get PDF
    • …
    corecore