6,322 research outputs found

    A Study of an Open-Ended Strategy for Learning Complex Locomotion Skills

    Get PDF

    Spartan Daily, November 18, 1981

    Get PDF
    Volume 77, Issue 55https://scholarworks.sjsu.edu/spartandaily/6831/thumbnail.jp

    Spartan Daily, March 23, 1982

    Get PDF
    Volume 78, Issue 32https://scholarworks.sjsu.edu/spartandaily/6875/thumbnail.jp

    Grids and the Virtual Observatory

    Get PDF
    We consider several projects from astronomy that benefit from the Grid paradigm and associated technology, many of which involve either massive datasets or the federation of multiple datasets. We cover image computation (mosaicking, multi-wavelength images, and synoptic surveys); database computation (representation through XML, data mining, and visualization); and semantic interoperability (publishing, ontologies, directories, and service descriptions)

    Black shale lithofacies prediction and distribution Pattern analysis of middle Devonian Marcellus Shale in the Appalachian Basin, northeastern U.S.A.

    Get PDF
    The Marcellus Shale, marine organic-rich mudrock deposited during Middle Devonian in the Appalachian basin, is considered the largest unconventional shale-gas resource in United State. Although homogeneous in the appearance, the mudstone shows heterogeneity in mineral composition, organic matter richness, gas content, and fracture density. Two critical factors for unconventional mudstone reservoirs are units amenable to hydraulic fracture stimulation and rich of organic matter. The effectiveness of hydraulic fracture stimulation is influenced by rock geomechanical properties, which are related to rock mineralogy. The natural gas content in mudrock reservoirs has a strong relationship with organic matter, which is measured by total organic carbon (TOC). In place of using petrographic information and sedimentary structures, Marcellus Shale lithofacies were based on mineral composition and organic matter richness and were predicted by conventional logs to make the lithofacies \u27meaningful’, ‘predictable’ and ‘mappable’ at multiple scales from the well bore to basin. Core X-ray diffraction (XRD) and TOC data was used to classify Marcellus Shale into seven lithofacies according to three criteria: clay volume, the ratio of quartz to carbonate, and TOC. Pulsed neutron spectroscopy (PNS) logs provide similar mineral concentration and TOC content, and were used to classify shale lithofacies by the same three criteria. Artificial neural network (ANN) with improvements (i.e., learning algorithms, performance function and topology design) was utilized to predict Marcellus Shale lithofacies in 707 wells with conventional logs. To improve the effectiveness of wireline logs to predict lithofacies, the effects of barite and pyrite were partly removed and eight petrophysical parameters commonly used for a conventional reservoir analysis were derived from conventional logs by petrophysical analysis. These parameters were used as input to the ANN analysis. Geostatistical analysis was used to develop the experimental variogram models and vertical proportion of each lithofacies. Indictor kriging, truncated Gaussian simulation (TGS), and sequential indicator simulation (SIS) were compared, and SIS algorithm performed well for modeling Marcellus Shale lithofacies in three-dimensions. Controlled primarily by sediment dilution, organic matter productivity, and organic matter preservation/decomposition, Marcellus Shale lithofacies distribution was dominantly affected by the water depth and the distance to shoreline. The Marcellus Shale lithofacies with the greatest organic content and highest measure of brittleness is concentrated along a crescent shape region paralleling the inferred shelf and shoreline, showing shape of crescent paralleling with shoreline. The normalized average gas production rate from horizontal wells supported the proposed approach to modeling Marcellus Shale lithofacies. The proposed 3-D modeling approach may be helpful for (1) investigating the distribution of each lithofacies at a basin-scale; (2) developing a better understanding of the factors controlling the deposition and preservation of organic matter and the depositional model of marine organic-rich mudrock; (3) identifying organic-rich units and areas and brittle units and areas in shale-gas reservoirs; (4) assisting in the design of horizontal drilling trajectories and location of stimulation activity; and (5) providing input parameters for the simulation of gas flow and production in mudrock (e.g., porosity, permeability and fractures)

    Controller for TORCS created by imitation

    Get PDF
    Proceeding of: IEEE Symposium on Computational Intelligence and Games, 2009. CIG 2009, september 7-10, 2009, Milano, ItalyThis paper is an initial approach to create a controller for the game TORCS by learning how another controller or humans play the game. We used data obtained from two controllers and from one human player. The first controller is the winner of the WCCI 2008 Simulated Car Racing Competition, and the second one is a hand coded controller that performs a complete lap in all tracks. First, each kind of controller is imitated separately, then a mix of the data is used to create new controllers. The imitation is performed by means of training a feed forward neural network with the data, using the backpropagation algorithm for learning.This work was supported in part by the University Carlos III of Madrid under grant PIF UC3M01-0809 and by the Ministry of Science and Innovation under project TRA2007- 67374-C02-02

    Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space

    Get PDF
    For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others\u27 images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems

    Statistical Performance Analysis of an Ant-Colony Optimisation Application in S-NET

    Get PDF
    Kenneth MacKenzie, Philip K. F. Hölzenspies, Kevin Hammond, Raimund Kirner, Vu Thien Nga Nguyen, Iraneus te Boekhorst, Clemens Grelck, Raphael Poss, Merijn Verstraaten, 'Statistical Performance Analysis of an Ant-Colony Optimisation Application in S-NET'. Paper presented at the 2nd Workshop on Feedback-Directed Compiler Optimization for Multi-Core Architectures. Berlin, Germany, 12 January 2013.We consider an ant-colony optimsation problem implemented on a multicore system as a collection of asynchronous stream- processing components under the control of the S-NET coordina- tion language. Statistical analysis and visualisation techniques are used to study the behaviour of the application, and this enables us to discover and correct problems in both the application program and the run-time system underlying S-NET
    • …
    corecore