29 research outputs found

    Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Using an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    ROADS DATA CONFLATION USING UPDATE HIGH RESOLUTION SATELLITE IMAGES

    Get PDF

    Details of Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Us- ing an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    Modeling spatial uncertainties in geospatial data fusion and mining

    Get PDF
    Geospatial data analysis relies on Spatial Data Fusion and Mining (SDFM), which heavily depend on topology and geometry of spatial objects. Capturing and representing geometric characteristics such as orientation, shape, proximity, similarity, and their measurement are of the highest interest in SDFM. Representation of uncertain and dynamically changing topological structure of spatial objects including social and communication networks, roads and waterways under the influence of noise, obstacles, temporary loss of communication, and other factors. is another challenge. Spatial distribution of the dynamic network is a complex and dynamic mixture of its topology and geometry. Historically, separation of topology and geometry in mathematics was motivated by the need to separate the invariant part of the spatial distribution (topology) from the less invariant part (geometry). The geometric characteristics such as orientation, shape, and proximity are not invariant. This separation between geometry and topology was done under the assumption that the topological structure is certain and does not change over time. New challenges to deal with the dynamic and uncertain topological structure require a reexamination of this fundamental assumption. In the previous work we proposed a dynamic logic methodology for capturing, representing, and recording uncertain and dynamic topology and geometry jointly for spatial data fusion and mining. This work presents a further elaboration and formalization of this methodology as well as its application for modeling vector-to-vector and raster-to-vector conflation/registration problems and automated feature extraction from the imagery

    MapSnap System to Perform Vector-to-Raster Fusion

    Get PDF
    As the availability of geospatial data increases, there is a growing need to match these datasets together. However, since these datasets often vary in their origins and spatial accuracy, they frequently do not correspond well to each other, which create multiple problems. To accurately align with imagery, analysts currently either: 1) manually move the vectors, 2) perform a labor-intensive spatial registration of vectors to imagery, 3) move imagery to vectors, or 4) redigitize the vectors from scratch and transfer the attributes. All of these are time consuming and labor-intensive operations. Automated matching and fusing vector datasets has been a subject of research for years, and strides are being made. However, much less has been done with matching or fusing vector and raster data. While there are initial forays into this research area, the approaches are not robust. The objective of this work is to design and build robust software called MapSnap to conflate vector and image data in an automated/semi-automated manner. This paper reports the status of the MapSnap project that includes: (i) the overall algorithmic approach and system architecture, (ii) a tiling approach to deal with large datasets to tune MapSnap parameters, (iii) time comparison of MapSnap with re-digitizing the vectors from scratch and transfer the attributes, and (iv) accuracy comparison of MapSnap with manual adjustment of vectors. The paper concludes with the discussion of future work including addressing the general problem of continuous and rapid updating vector data, and fusing vector data with other data

    Conflating point of interest (POI) data: A systematic review of matching methods

    Full text link
    Point of interest (POI) data provide digital representations of places in the real world, and have been increasingly used to understand human-place interactions, support urban management, and build smart cities. Many POI datasets have been developed, which often have different geographic coverages, attribute focuses, and data quality. From time to time, researchers may need to conflate two or more POI datasets in order to build a better representation of the places in the study areas. While various POI conflation methods have been developed, there lacks a systematic review, and consequently, it is difficult for researchers new to POI conflation to quickly grasp and use these existing methods. This paper fills such a gap. Following the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we conduct a systematic review by searching through three bibliographic databases using reproducible syntax to identify related studies. We then focus on a main step of POI conflation, i.e., POI matching, and systematically summarize and categorize the identified methods. Current limitations and future opportunities are discussed afterwards. We hope that this review can provide some guidance for researchers interested in conflating POI datasets for their research

    Iz stranih časopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim časopisima
    corecore