3,610 research outputs found

    Automatically Configuring Multi-objective Local Search Using Multi-objective Optimisation

    Get PDF
    International audienceAutomatic algorithm configuration (AAC) is becoming an increasingly crucial component in the design of high-performance solvers for many challenging combinatorial optimisation problems. This raises the question how to most effectively leverage AAC in the context of building or optimising multi-objective optimisation algorithms, and specifically , multi-objective local search procedures. Because the performance of multi-objective optimisation algorithms cannot be fully characterised by a single performance indicator, we believe that AAC for multi-objective local search should make use of multi-objective configuration procedures. We test this belief by using MO-ParamILS to automatically configure a highly parametric iterated local search framework for the classical and widely studied bi-objective permutation flowshop problem. To the best of our knowledge, this is the first time a multi-objective optimisation algorithm is automatically configured in a multi-objective fashion, and our results demonstrate that this approach can produce very good results as well as interesting insights into the efficacy of various strategies and components of a flexible multi-objective local search framework

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    The General Combinatorial Optimization Problem: Towards Automated Algorithm Design

    Get PDF
    This paper defines a new combinatorial optimisation problem, namely General Combinatorial Optimisation Problem (GCOP), whose decision variables are a set of parametric algorithmic components, i.e. algorithm design decisions. The solutions of GCOP, i.e. compositions of algorithmic components, thus represent different generic search algorithms. The objective of GCOP is to find the optimal algorithmic compositions for solving the given optimisation problems. Solving the GCOP is thus equivalent to automatically designing the best algorithms for optimisation problems. Despite recent advances, the evolutionary computation and optimisation research communities are yet to embrace formal standards that underpin automated algorithm design. In this position paper, we establish GCOP as a new standard to define different search algorithms within one unified model. We demonstrate the new GCOP model to standardise various search algorithms as well as selection hyper-heuristics. A taxonomy is defined to distinguish several widely used terminologies in automated algorithm design, namely automated algorithm composition, configuration and selection. We would like to encourage a new line of exciting research directions addressing several challenging research issues including algorithm generality, algorithm reusability, and automated algorithm design

    A DSS generator for multiobjective optimisation of spreadsheet-based models

    Get PDF
    Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software Vol. 26 (2011), DOI: 10.1016/j.envsoft.2010.11.004Water management practice has benefited from the development of model-driven Decision Support Systems (DSS), and in particular those that combine simulation with single or multiple-objective optimisation tools. However, there are many performance, acceptance and adoption problems with these decision support tools caused mainly by misunderstandings between the communities of system developers and users. This paper presents a general-purpose decision-support system generator, GANetXL, for developing specific applications that require multiobjective optimisation of spreadsheet-based models. The system is developed as an Excel add-in that provides easy access to evolutionary multiobjective optimisation algorithms to non-specialists by incorporating an intuitive interactive graphical user interface that allows easy creation of specific decision-support applications. GANetXL’s utility is demonstrated on two examples from water engineering practice, a simple water supply reservoir operation model with two objectives and a large combinatorial optimisation problem of pump scheduling in water distribution systems. The two examples show how GANetXL goes a long way toward closing the gap between the achievements in optimisation technology and the successful use of DSS in practice.Engineering and Physical Sciences Research Council (EPSRC

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Automated Design of Metaheuristic Algorithms: A Survey

    Full text link
    Metaheuristics have gained great success in academia and practice because their search logic can be applied to any problem with available solution representation, solution quality evaluation, and certain notions of locality. Manually designing metaheuristic algorithms for solving a target problem is criticized for being laborious, error-prone, and requiring intensive specialized knowledge. This gives rise to increasing interest in automated design of metaheuristic algorithms. With computing power to fully explore potential design choices, the automated design could reach and even surpass human-level design and could make high-performance algorithms accessible to a much wider range of researchers and practitioners. This paper presents a broad picture of automated design of metaheuristic algorithms, by conducting a survey on the common grounds and representative techniques in terms of design space, design strategies, performance evaluation strategies, and target problems in this field
    • …
    corecore