7 research outputs found

    Certificate size reduction in abstraction-carrying code

    Get PDF
    Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certificate and its generation is carried out automatically by a fixpoint analyzer. The advantage of providing a (fixpoint) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible while at the same time not increasing checking time. The intuitive idea is to only include in the certificate information that the checker is unable to reproduce without iterating. We introduce the notion of reduced certificate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the fall certificate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker. Interestingly, the fact that the reduced certificate omits (parts of) the abstraction has implications in the design of the checker. We provide the sufficient conditions which allow us to ensure that 1) if the checker succeeds in validating the certificate, then the certificate is valid for the program (correctness) and 2) the checker will succeed for any reduced certificate which is valid (completeness). Our approach has been implemented and benchmarked within the CiaoPP system. The experimental results show t h a t our proposal is able to greatly reduce the size of certificates in practice. To appear in Theory and Practice of Logic Programming (TPLP)

    Integrated multiple sequence alignment

    Get PDF
    Sammeth M. Integrated multiple sequence alignment. Bielefeld (Germany): Bielefeld University; 2005.The thesis presents enhancements for automated and manual multiple sequence alignment: existing alignment algorithms are made more easily accessible and new algorithms are designed for difficult cases. Firstly, we introduce the QAlign framework, a graphical user interface for multiple sequence alignment. It comprises several state-of-the-art algorithms and supports their parameters by convenient dialogs. An alignment viewer with guided editing functionality can also highlight or print regions of the alignment. Also phylogenetic features are provided, e.g., distance-based tree reconstruction methods, corrections for multiple substitutions and a tree viewer. The modular concept and the platform-independent implementation guarantee an easy extensibility. Further, we develop a constrained version of the divide-and-conquer alignment such that it can be restricted by anchors found earlier with local alignments. It can be shown that this method shares attributes of both, local and global aligners, in the quality of results as well as in the computation time. We further modify the local alignment step to work on bipartite (or even multipartite) sets for sequences where repeats overshadow valuable sequence information. In the end a technique is established that can accurately align sequences containing eventually repeated motifs. Finally, another algorithm is presented that allows to compare tandem repeat sequences by aligning them with respect to their possible repeat histories. We describe an evolutionary model including tandem duplications and excisions, and give an exact algorithm to compare two sequences under this model

    THE AUTOMATIC CONTROL OF LARGE SHIPS IN CONFINED WATERS

    Get PDF
    The design and evaluation of a control system, which can be utilised for the automatic guidance of large ships in confined or restricted waters, is investigated. The vessel is assumed to be a multivariable system and it is demonstrated that a non-linear, time-varying mathematical model most accurately describes the motion of the hull, particularly in tight manoeuvres. A discrete optimal controller has been designed to control simultaneously track, heading and forward velocity. The system is most effective whilst operating under a dual-mode policy. It is shown that feedback matrix adaption is necessary to deal with changes in forward velocity and a form of gain scheduling is proposed. Active disturbance control is employed to counteract effects of wind and tide. An inertial navigation system, together with an optimal controller and filter, is installed on-board a car ferry model. Free-sailing tests show that the performance characteristics of the system are in accordance with theoretical predictions. The feasibility of implementation on a full-size vessel is considered.University College, Londo

    Representing and Inferring Visual Perceptual Skills in Dermatological Image Understanding

    Get PDF
    Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. Eliciting and representing their visual strategies and some aspects of domain knowledge will benefit a wide range of studies and applications. For example, image understanding may be improved through active learning frameworks by transferring human domain knowledge into image-based computational procedures, intelligent user interfaces enhanced by inferring dynamic informational needs in real time, and cognitive processing analyzed via unveiling the engaged underlying cognitive processes. An eye tracking experiment was conducted to collect both eye movement and verbal narrative data from three groups of subjects with different medical training levels or no medical training in order to study perceptual skill. Each subject examined and described 50 photographical dermatological images. One group comprised 11 board-certified dermatologists (attendings), another group was 4 dermatologists in training (residents), and the third group 13 novices (undergraduate students with no medical training). We develop a novel hierarchical probabilistic framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited by the three expertise-specific groups. A hidden Markov model is used to describe each subject\u27s eye movement sequence combined with hierarchical stochastic processes to capture and differentiate the discovered eye movement patterns shared by multiple subjects\u27 eye movement sequences within and among the three expertise-specific groups. Through these patterned eye movement behaviors we are able to elicit some aspects of the domain-specific knowledge and perceptual skill from the subjects whose eye movements are recorded during diagnostic reasoning processes on medical images. Analyzing experts\u27 eye movement patterns provides us insight into cognitive strategies exploited to solve complex perceptual reasoning tasks. Independent experts\u27 annotations of diagnostic conceptual units of thought in the transcribed verbal narratives are time-aligned with discovered eye movement patterns to help interpret the patterns\u27 meanings. By mapping eye movement patterns to thought units, we uncover the relationships between visual and linguistic elements of their reasoning and perceptual processes, and show the manner in which these subjects varied their behaviors while parsing the images

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Model checking concurrent and real-time systems : the PAT approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore