1,623 research outputs found

    Intelligent Embedded Vision for Summarization of Multi-View Videos in IIoT

    Get PDF
    Nowadays, video sensors are used on a large scale for various applications including security monitoring and smart transportation. However, the limited communication bandwidth and storage constraints make it challenging to process such heterogeneous nature of Big Data in real time. Multi-view video summarization (MVS) enables us to suppress redundant data in distributed video sensors settings. The existing MVS approaches process video data in offline manner by transmitting it to the local or cloud server for analysis, which requires extra streaming to conduct summarization, huge bandwidth, and are not applicable for integration with industrial internet of things (IIoT). This paper presents a light-weight CNN and IIoT based computationally intelligent (CI) MVS framework. Our method uses an IIoT network containing smart devices, Raspberry Pi (clients and master) with embedded cameras to capture multi-view video (MVV) data. Each client Raspberry Pi (RPi) detects target in frames via light-weight CNN model, analyzes these targets for traffic and crowd density, and searches for suspicious objects to generate alert in the IIoT network. The frames of each client RPi are encoded and transmitted with approximately 17.02% smaller size of each frame to master RPi for final MVS. Empirical analysis shows that our proposed framework can be used in industrial environments for various applications such as security and smart transportation and can be proved beneficial for saving resources

    Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities

    Full text link
    [EN] Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing holds potential for new breeds of services and user experience. However, Fog computing is still nascent and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily deployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services on local network while reducing the cost. In this paper, we present a novel resource efficient framework for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on different nodes and a summary is generated over the Fog network, which is periodically pushed to the cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos are used to evaluate the proposed system. Experimental results suggest that even by using an extremely limited resource, single board computer, the proposed framework has very little overhead with good scalability over off-the-shelf costly cloud solutions, validating its effectiveness for IoT-assisted smart cities. (C) 2018 Elsevier Inc. All rights reserved.Nasir, M.; Muhammad, K.; Lloret, J.; Sangaiah, AK.; Sajjad, M. (2019). Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal of Parallel and Distributed Computing. 126:161-170. https://doi.org/10.1016/j.jpdc.2018.11.004S16117012

    Deep Learning -- A first Meta-Survey of selected Reviews across Scientific Disciplines, their Commonalities, Challenges and Research Impact

    Full text link
    Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Similar to the basic structure of a brain, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources (image, language, medical, mixed). In addition, we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.Comment: 83 pages, 22 figures, 9 tables, 100 reference

    Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions

    Full text link
    [EN] The excessive use of digital devices such as cameras and smartphones in smart cities has produced huge data repositories that require automatic tools for efficient browsing, searching, and management. Data prioritization (DP) is a technique that produces a condensed form of the original data by analyzing its contents. Current DP studies are either concerned with data collected through stable capturing devices or focused on prioritization of data of a certain type such as surveillance, sports, or industry. This necessitates the need for DP tools that intelligently and cost-effectively prioritize a large variety of data for detecting abnormal events and hence effectively manage them, thereby making the current smart cities greener. In this article, we first carry out an in-depth investigation of the recent approaches and trends of DP for data of different natures, genres, and domains of two decades in green smart cities. Next, we propose an energy-efficient DP framework by intelligent integration of the Internet of Things, artificial intelligence, and big data analytics. Experimental evaluation on real-world surveillance data verifies the energy efficiency and applicability of this framework in green smart cities. Finally, this article highlights the key challenges of DP, its future requirements, and propositions for integration into green smart citiesThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2016R-1A2B4011712).Muhammad, K.; Lloret, J.; Baik, SW. (2019). Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions. IEEE Communications Magazine. 57(2):60-65. https://doi.org/10.1109/MCOM.2018.1800371S606557

    Temporal Mapping of Surveillance Video for Indexing and Summarization

    Get PDF
    This work converts the surveillance video to a temporal domain image called temporal profile that is scrollable and scalable for quick searching of long surveillance video by human operators. Such a profile is sampled with linear pixel lines located at critical locations in the video frames. It has precise time stamp on the target passing events through those locations in the field of view, shows target shapes for identification, and facilitates the target search in long videos. In this paper, we first study the projection and shape properties of dynamic scenes in the temporal profile so as to set sampling lines. Then, we design methods to capture target motion and preserve target shapes for target recognition in the temporal profile. It also provides the uniformed resolution of large crowds passing through so that it is powerful in target counting and flow measuring. We also align multiple sampling lines to visualize the spatial information missed in a single line temporal profile. Finally, we achieve real time adaptive background removal and robust target extraction to ensure long-term surveillance. Compared to the original video or the shortened video, this temporal profile reduced data by one dimension while keeping the majority of information for further video investigation. As an intermediate indexing image, the profile image can be transmitted via network much faster than video for online video searching task by multiple operators. Because the temporal profile can abstract passing targets with efficient computation, an even more compact digest of the surveillance video can be created

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    The 10 Research Topics in the Internet of Things

    Full text link
    Since the term first coined in 1999 by Kevin Ashton, the Internet of Things (IoT) has gained significant momentum as a technology to connect physical objects to the Internet and to facilitate machine-to-human and machine-to-machine communications. Over the past two decades, IoT has been an active area of research and development endeavours by many technical and commercial communities. Yet, IoT technology is still not mature and many issues need to be addressed. In this paper, we identify 10 key research topics and discuss the research problems and opportunities within these topics.Comment: 10 pages. IEEE CIC 2020 vision pape

    "You Tube and I Find" - personalizing multimedia content access

    Full text link
    Recent growth in broadband access and proliferation of small personal devices that capture images and videos has led to explosive growth of multimedia content available everywhereVfrom personal disks to the Web. While digital media capture and upload has become nearly universal with newer device technology, there is still a need for better tools and technologies to search large collections of multimedia data and to find and deliver the right content to a user according to her current needs and preferences. A renewed focus on the subjective dimension in the multimedia lifecycle, fromcreation, distribution, to delivery and consumption, is required to address this need beyond what is feasible today. Integration of the subjective aspects of the media itselfVits affective, perceptual, and physiological potential (both intended and achieved), together with those of the users themselves will allow for personalizing the content access, beyond today’s facility. This integration, transforming the traditional multimedia information retrieval (MIR) indexes to more effectively answer specific user needs, will allow a richer degree of personalization predicated on user intention and mode of interaction, relationship to the producer, content of the media, and their history and lifestyle. In this paper, we identify the challenges in achieving this integration, current approaches to interpreting content creation processes, to user modelling and profiling, and to personalized content selection, and we detail future directions. The structure of the paper is as follows: In Section I, we introduce the problem and present some definitions. In Section II, we present a review of the aspects of personalized content and current approaches for the same. Section III discusses the problem of obtaining metadata that is required for personalized media creation and present eMediate as a case study of an integrated media capture environment. Section IV presents the MAGIC system as a case study of capturing effective descriptive data and putting users first in distributed learning delivery. The aspects of modelling the user are presented as a case study in using user’s personality as a way to personalize summaries in Section V. Finally, Section VI concludes the paper with a discussion on the emerging challenges and the open problems
    corecore