205 research outputs found

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Improvement of DHRA-DMDC Physical Access Software DBIDS Using Cloud Computing Technology: a Case Study

    Get PDF
    The U.S government has created and been executing an Identity and Management (IdM) vision to support a global, robust, trusted and interoperable identity management capability that provides the ability to correctly identify individuals and non-person entities in support of DoD mission operations. Many Directives and Instructions have been issued to standardize the process to design, re-designed new and old systems with latest available technologies to meet the visions requirements. In this thesis we introduce a cloud-based architecture for the Defense Biometric Identification System (DBIDS), along with a set of DBIDS Cloud Services that supports the proposed architecture. This cloud-based architecture will move DBIDS in the right direction to meet Dod IdM visions and goals by decoupling current DBIDS functions into DBIDS core services to create interoperability and flexibility to expand future DBIDS with new requirements. The thesis will show its readers how DBIDS Cloud Services will help Defense Manpower Data Center (DMDC) easily expanding DBIDS functionalities such as connecting to other DMDC services or federated services for vetting purposes. This thesis will also serve as a recommendation of a blue-print for DBIDS architecture to support new generation of DBIDS application. This is a step closer in moving DMDC Identity Enterprise Solution toward DoD IdM realizing vision and goals. The thesis also includes a discussion of how to utilize virtualized DBIDS workstations to address software-deployment and maintenance issues to resolve configuration and deployment issues which have been costly problems for DMDC over the years.http://archive.org/details/improvementofdhr109457379Civilian, Department of Defens
    corecore