635 research outputs found

    Temperature Control Using an Air Handling Unit Installed with Carel pCO5+ Controller

    Get PDF
    This dissertation reports the project work developed in the Thesis/Dissertation course during the 2nd year of the Master of Electrical and Computer Engineering in the field of Automation and Systems, Department of Electrical Engineering (DEE) at Instituto Superior de Engenharia do Porto (ISEP). The installation of an Air Handling Unit (AHU) in a work place or a hospital plays an important role in the treatment and maintaining the purity of air. The temperature control is focused in this dissertation. The AHU maintains the temperature of the room or office at a set temperature. The heating and cooling function are done automatically by taking in the reference temperature of the room also depending on the outdoor climate. The main purpose of the AHU is to ensure comfort to the patients, staffs and the employees. In case of the hospitals, the main function of AHU is air cleanliness in hygiene applications. It also includes supplying a sufficient amount of oxygen and removing the carbon dioxide and maintaining a comfortable room climate. They help protect patients and staff from infections. This dissertation will focus on the study of wide range of technologies which will work on the AHU with the Carel electronic controller whose main function is to control the temperature of an office. The unit was installed at Farfetch, Barco, Portugal. The study includes the working of selection criteria of the supply and return fans, inverters, recovery unit, probes, dampers and the controller

    LCCC Workshop on Process Control

    Get PDF

    Model predictive control for microgrid functionalities: review and future challenges

    Get PDF
    ABSTRACT: Renewable generation and energy storage systems are technologies which evoke the future energy paradigm. While these technologies have reached their technological maturity, the way they are integrated and operated in the future smart grids still presents several challenges. Microgrids appear as a key technology to pave the path towards the integration and optimized operation in smart grids. However, the optimization of microgrids considered as a set of subsystems introduces a high degree of complexity in the associated control problem. Model Predictive Control (MPC) is a control methodology which has been satisfactorily applied to solve complex control problems in the industry and also currently it is widely researched and adopted in the research community. This paper reviews the application of MPC to microgrids from the point of view of their main functionalities, describing the design methodology and the main current advances. Finally, challenges and future perspectives of MPC and its applications in microgrids are described and summarized.info:eu-repo/semantics/publishedVersio

    Activity Report: Automatic Control 1997

    Get PDF
    • …
    corecore