291 research outputs found

    Identification of storm eye from Satellite image data using fuzzy logic with machine learning

    Full text link
    This research presents a study of a unique technique for identifying storm eye that is based on fuzzy logic and image processing with the help of cloud images. Fuzzy logic is a term that refers to complicated systems with unclear behaviour caused by a number of different circumstances. It provides the ability to model the dynamic behavior of the storm and determines the location of the best eye in an area of interest. After that, image processing is applied to enable accurate eye positioning based on the search results. The experimental results are analyzing the storm eye position with approxiamtely 98%98\% accurate compared to the India meteorological department provided best track data and Cooperative Institute for Meteorological Satellite Studies provided Advances Dvorak Technique data. As a result, the identification of storm's eye location using this technique can be found to improve significantly. Using the present technique, it is possible to determine the eye entirely automatically, which replacing the manual method that has been employed in the past

    An intelligent tropical cyclone eye fix system using motion field analysis

    Get PDF
    Tropical cyclones (TCs) are weather systems with vast destructive power. Accurate location of their circulation centers, or "eyes", is thus important to forecasters. However, the eye fix process is often done manually in practice. While multiple factors are considered in the process, with subjective elements in these methods, forecasters could disagree. This paper describes a TC eye fix system that uses a novel motion field structure analysis method. It can handle TCs without well-defined structure that are partially out of the image. The systems also adapts user inputs and past results to improve its accuracy. Implemented on a commodity desktop computer, the system can process about 5 images per minute, giving an average error of about 0.16 degrees in latitude/longitude on Mercator projected map for TCs that are completely inside the radar image. This is well within the relative error of about 0.3-0.4 degrees given by different TC warning centers. This TC eye fix system is useful in giving an objective TC center location in contrast to traditional manual analysis. © 2005 IEEE.published_or_final_versio

    An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels

    Get PDF
    Tropical cyclones (TCs) are destructive natural disasters. Accurate prediction and monitoring are important to mitigate the effects of natural disasters. Although remarkable efforts have been made to understand TCs, operational monitoring information still depends on the experience and knowledge of forecasters. In this study, a fully automated geostationary-satellite-based TC center estimation approach is proposed. The proposed approach consists of two improved methods: the setting of regions of interest (ROI) using a score matrix (SCM) and a TC center determination method using an enhanced logarithmic spiral band (LSB) and SCM. The former enables prescreening of the regions that may be misidentified as TC centers during the ROI setting step, and the latter contributes to the determination of an accurate TC center, considering the size and length of the TC rainband in relation to its intensity. Two schemes, schemes A and B, were examined depending on whether the forecasting data or real-time observations were used to determine the initial guess of the TC centers. For each scheme, two models were evaluated to discern whether SCM was combined with LSB for TC center determination. The results were investigated based on TC intensity and phase to determine the impact of TC structural characteristics on TC center determination. While both proposed models improved the detection performance over the existing approach, the best-performing model (i.e., LSB combined with SCM) achieved skill scores (SSs) of +17.4% and +20.8% for the two schemes. In particular, the model resulted in a significant improvement for strong TCs (categories 4 and 5), with SSs of +47.8% and +72.8% and +41.2% and +72.3% for schemes A and B, respectively. The research findings provide an improved understanding of the intensity- and phase-wise spatial characteristics of TCs, which contributes to objective TC center estimation

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018

    CIRA annual report FY 2013/2014

    Get PDF

    Monitoring dugongs within the Reef 2050 Integrated Monitoring and Reporting Program: final report of the dugong team in the megafauna expert group

    Get PDF
    The objectives of this report are to determine for the dugong: An assessment of the current status of the relevant elements of the Great Barrier Reef (the Reef), including an evaluation of primary drivers, pressures and responses using the Driving Forces, Pressures, States, Impacts, Responses (DPSIR) Framework; Identification of priority indicators for monitoring the key values associated with these elements; Summary of potential sources of data; Evaluation of adequacy of existing monitoring activities within each theme to achieve the objectives and requirements of RIMReP; Recommendations for the design of an integrated monitoring program as a component of RIMReP, specifically considering: The information requirements for each key element of the Reef to ensure that appropriate data and information are being collected to meet the fundamental objectives of RIMReP; The spatial and temporal sampling design to ensure that greatest value can be extracted from the data collected; The logistics of the design to ensure that it can be implemented efficiently; Likely funding required to implement the recommended monitoring design.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Atmospheric Research 2014 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 20-year record of peer-reviewed publications and proposals among the various Laboratories. This data shows that the scientific work being conducted in the Laboratories is competitive with the work being done elsewhere in universities and other government agencies. The office of Deputy Director for Atmospheric Research will strive to maintain this record by rigorously monitoring and promoting quality while emphasizing coordination and integration among atmospheric disciplines. Also, an appropriate balance will be maintained between the scientists' responsibility for large collaborative projects and missions and their need to carry out active science research as a principal investigator. This balance allows members of the Laboratories to improve their scientific credentials, and develop leadership potentials. Interdisciplinary research is carried out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other government agencies. Members of the Laboratories interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratories raise the public's awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Atmosphere Laboratories make substantial efforts to attract and recruit new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA's mission, provides highlights of our research scope and activities, and summarizes our scientists' major accomplishments during calendar year 2014. The composition of the organization is shown in Figure 1.2 for each code. This report is published in a printed version with an electronic version on our atmospheres Web site, http://atmospheres.gsfc.nasa.gov/

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems
    corecore