8,625 research outputs found

    Local Short Term Electricity Load Forecasting: Automatic Approaches

    Full text link
    Short-Term Load Forecasting (STLF) is a fundamental component in the efficient management of power systems, which has been studied intensively over the past 50 years. The emerging development of smart grid technologies is posing new challenges as well as opportunities to STLF. Load data, collected at higher geographical granularity and frequency through thousands of smart meters, allows us to build a more accurate local load forecasting model, which is essential for local optimization of power load through demand side management. With this paper, we show how several existing approaches for STLF are not applicable on local load forecasting, either because of long training time, unstable optimization process, or sensitivity to hyper-parameters. Accordingly, we select five models suitable for local STFL, which can be trained on different time-series with limited intervention from the user. The experiment, which consists of 40 time-series collected at different locations and aggregation levels, revealed that yearly pattern and temperature information are only useful for high aggregation level STLF. On local STLF task, the modified version of double seasonal Holt-Winter proposed in this paper performs relatively well with only 3 months of training data, compared to more complex methods

    An Overview of Electricity Demand Forecasting Techniques

    Get PDF
    Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. This paper presents a review of electricity demand forecasting techniques. The various types of methodologies and models are included in the literature. Load forecasting can be broadly divided into three categories: short-term forecasts which are usually from one hour to one week, medium forecasts which are usually from a week to a year, and long-term forecasts which are longer than a year.  Based on the various types of studies presented in these papers, the load forecasting techniques may be presented in three major groups: Traditional Forecasting technique, Modified Traditional Technique and Soft Computing Technique. Keywords: Electricity Demand, Forecasting Techniques, Soft Computing, Regression method, SVM

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Short-term Building Energy Model Recommendation System: A Meta-learning Approach

    Get PDF
    High-fidelity and computationally efficient energy forecasting models for building systems are needed to ensure optimal automatic operation, reduce energy consumption, and improve the building’s resilience capability to power disturbances. Various models have been developed to forecast building energy consumption. However, given buildings have different characteristics and operating conditions, model performance varies. Existing research has mainly taken a trial-and-error approach by developing multiple models and identifying the best performer for a specific building, or presumed one universal model form which is applied on different building cases. To the best of our knowledge, there does not exist a generalized system framework which can recommend appropriate models to forecast the building energy profiles based on building characteristics. To bridge this research gap, we propose a meta-learning based framework, termed Building Energy Model Recommendation System (BEMR). Based on the building’s physical features as well as statistical and time series meta-features extracted from the operational data and energy consumption data, BEMR is able to identify the most appropriate load forecasting model for each unique building. Three sets of experiments on 48 test buildings and one real building were conducted. The first experiment was to test the accuracy of BEMR when the training data and testing data cover the same condition. BEMR correctly identified the best model on 90% of the buildings. The second experiment was to test the robustness of the BEMR when the testing data is only partially covered by the training data. BEMR correctly identified the best model on 83% of the buildings. The third experiment uses a real building case to validate the proposed framework and the result shows promising applicability and extensibility. The experimental results show that BEMR is capable of adapting to a wide variety of building types ranging from a restaurant to a large office, and gives excellent performance in terms of both modeling accuracy and computational efficiency

    Consumer Load Prediction and Theft Detection on Distribution Network Using Autoregressive Model

    Get PDF
    Load prediction is essential for the planning and management of electric power system and this has been an area of research interest recently. Various load forecasting techniques have been proposed to predict consumer load which represents the activities of the consumer on the distribution network. Commonly, these techniques use cumulative energy consumption data of various consumers connected to the power system to predict consumer load. However, this data fails to reveal the activities of individual consumers as related to energy consumption and stealing of electricity. A new approach of predicting consumer load and detecting electricity theft based on autoregressive model technique is proposed in this paper. The objective is to evaluate the relationship between the consumer load consumption vis-a-vis the model coefficients and model order selection. Such evaluation will facilitate effective monitoring of the individual consumer behaviour, which will be indicated in the changes in model parameters and invariably lead to detection of electricity theft on the part of the consumer. The study used the data acquired from consumer load prototype which represents a typical individual consumer connected to the distribution network. Average energy consumption obtained over 24 hours was used for the modelling and 5-minute step ahead load prediction based on model order 20 of minimum description length criterion technique was achieved. Electricity theft activities were detected whenever there are disparities in the model coefficients and consumer load data
    • …
    corecore