364 research outputs found

    Stepwise refinement of heap-manipulating code in Chalice

    Get PDF
    Stepwise refinement is a well-studied technique for developing a program from an abstract description to a concrete implementation. This paper describes a system with automated tool support for refinement, powered by a state-of-the-art verification engine that uses an SMT solver. Unlike previous refinement systems, users of the presented system interact only via declarations in the programming language. Another aspect of the system is that it accounts for dynamically allocated objects in the heap, so that data representations in an abstract program can be refined into ones that use more objects. Finally, the system uses a language with familiar imperative features, including sequential composition, loops, and recursive calls, offers a syntax with skeletons for describing program changes between refinements, and provides a mechanism for supplying witnesses when refining non-deterministic programs

    Testing object-oriented software

    Get PDF

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Foundations of Session Types and Behavioural Contracts

    Get PDF
    International audienceBehavioural type systems, usually associated to concurrent or distributed computations, encompass concepts such as interfaces, communication protocols, and contracts, in addition to the traditional input/output operations. The behavioural type of a software component specifies its expected patterns of interaction using expressive type languages, so that types can be used to determine automatically whether the component interacts correctly with other components. Two related important notions of behavioural types are those of session types and behavioural contracts. This paper surveys the main accomplishments of the last twenty years within these two approaches

    An algebra of behavioural types

    Get PDF
    Special thanks to Gérard Boudol, Ilaria Castellani, Silvano Dal Zilio, and Massimo Merro, for fruitful discussions and careful reading of parts of this document. Several anonymous referees made useful comments.We propose a process algebra, the Algebra of Behavioural Types, as a language for typing concurrent objects. A type is a higher-order labelled transition system that characterises all possible life cycles of a concurrent object. States represent interfaces of objects; state transitions model the dynamic change of object interfaces. Moreover, a type provides an internal view of the objects that inhabits it: a synchronous one, since transitions correspond to message reception. To capture this internal view of objects we define a notion of bisimulation, strong on labels and weak on silent actions. We study several algebraic laws that characterise this equivalence, and obtain completeness results for image-finite types.publishersversionpublishe
    • …
    corecore