34 research outputs found

    Study of Speed and Force in Biomanipulation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Evaluation of Telerobotic Shared Control Strategy for Efficient Single-Cell Manipulation

    Full text link

    A Fully Automated Robotic System for Microinjection of Zebrafish Embryos

    Get PDF
    As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research

    Haptic technology for micro-robotic cell injection training systems — a review

    Full text link
    Currently, the micro-robotic cell injection procedure is performed manually by expert human bio-operators. In order to be proficient at the task, lengthy and expensive dedicated training is required. As such, effective specialized training systems for this procedure can prove highly beneficial. This paper presents a comprehensive review of haptic technology relevant to cell injection training and discusses the feasibility of developing such training systems, providing researchers with an inclusive resource enabling the application of the presented approaches, or extension and advancement of the work. A brief explanation of cell injection and the challenges associated with the procedure are first presented. Important skills, such as accuracy, trajectory, speed and applied force, which need to be mastered by the bio-operator in order to achieve successful injection, are then discussed. Then an overview of various types of haptic feedback, devices and approaches is presented. This is followed by discussion on the approaches to cell modeling. Discussion of the application of haptics to skills training across various fields and haptically-enabled virtual training systems evaluation are then presented. Finally, given the findings of the review, this paper concludes that a haptically-enabled virtual cell injection training system is feasible and recommendations are made to developers of such systems

    Mechanical Manipulation and Characterization of Biological Cells

    Get PDF
    Mechanical manipulation and characterization of an individual biological cell is currently one of the most exciting research areas in the field of medical robotics. Single cell manipulation is an important process in intracytoplasmic sperm injection (ICSI), pro-nuclei DNA injection, gene therapy, and other biomedical areas. However, conventional cell manipulation requires long training and the success rate depends on the experience of the operator. The goal of this research is to address the drawbacks of conventional cell manipulation by using force and vision feedback for cell manipulation tasks. We hypothesize that force feedback plays an important role in cell manipulation and possibly helps in cell characterization. This dissertation will summarize our research on: 1) the development of force and vision feedback interface for cell manipulation, 2) human subject studies to evaluate the addition of force feedback for cell injection tasks, 3) the development of haptics-enabled atomic force microscope system for cell indentation tasks, 4) appropriate analytical model for characterizing the mechanical property of mouse embryonic stem cells (mESC) and 5) several indentation studies on mESC to determine the mechanical property of undifferentiated and early differentiating (6 days under differentiation conditions) mESC. Our experimental results on zebrafish egg cells show that a system with force feedback capability when combined with vision feedback can lead to potentially higher success rates in cell injection tasks. Using this information, we performed experiments on mESC using the AFM to understand their characteristics in the undifferentiated pluripotent state as well as early differentiating state. These experiments were done on both live as well as fixed cells to understand the correlation between the two during cell indentation studies. Our results show that the mechanical property of undifferentiated mESC differs from early differentiating (6th day) mESC in both live and fixed cells. Thus, we hypothesize that mechanical characterization studies will potentially pave the way for developing a high throughput system with force feedback capability, to understand and predict the differentiation path a particular pluripotent cell will follow. This finding could also be used to develop improved methods of targeted cellular differentiation of stem cells for therapeutic and regenerative medicine

    High-Throughput Automated Injection of Individual Biological Cells

    Full text link

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest

    A microgripper for single cell manipulation

    Get PDF
    This thesis presents the development of an electrothermally actuated microgripper for the manipulation of cells and other biological particles. The microgripper has been fabricated using a combination of surface and bulk micromachining techniques in a three mask process. All of the fabrication details have been chosen to enable a tri-layer, polymer (SU8) - metal (Au) - polymer (SU8), membrane to be released from the substrate stress free and without the need for sacrificial layers. An actuator design, which completely eliminates the parasitic resistance of the cold arm, is presented. When compared to standard U-shaped actuators, it improves the thermal efficiency threefold. This enables larger displacements at lower voltages and temperatures. The microgripper is demonstrated in three different configurations: normally open mode, normally closed mode, and normally open/closed mode. It has-been modelled using two coupled analytical models - electrothermal and thermomechanical - which have been custom developed for this application. Unlike previously reported models, the electrothermal model presented here includes the heat exchange between hot and cold arms of the actuators that are separated by a small air gap. A detailed electrothermomechanical characterisation of selected devices has permitted the validation of the models (also performed using finite element analysis) and the assessment of device performance. The device testing includes electrical, deflection, and temperature measurements using infrared (IR) thermography, its use in polymeric actuators reported here for the first time. Successful manipulation experiments have been conducted in both air and liquid environments. Manipulation of live cells (mice oocytes) in a standard biomanipulation station has validated the microgripper as a complementary and unique tool for the single cell experiments that are to be conducted by future generations of biologists in the areas of human reproduction and stem cell research

    Force-controlled Biomanipulation for Biological Cell Mechanics Studies

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Virtual reality training for micro-robotic cell injection

    Full text link
    This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies
    corecore