8,016 research outputs found

    Automatic surrogate model type selection during the optimization of expensive black-box problems

    Get PDF
    The use of Surrogate Based Optimization (SBO) has become commonplace for optimizing expensive black-box simulation codes. A popular SBO method is the Efficient Global Optimization (EGO) approach. However, the performance of SBO methods critically depends on the quality of the guiding surrogate. In EGO the surrogate type is usually fixed to Kriging even though this may not be optimal for all problems. In this paper the authors propose to extend the well-known EGO method with an automatic surrogate model type selection framework that is able to dynamically select the best model type (including hybrid ensembles) depending on the data available so far. Hence, the expected improvement criterion will always be based on the best approximation available at each step of the optimization process. The approach is demonstrated on a structural optimization problem, i.e., reducing the stress on a truss-like structure. Results show that the proposed algorithm consequently finds better optimums than traditional kriging-based infill optimization

    MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems

    Full text link
    MATSuMoTo is the MATLAB Surrogate Model Toolbox for computationally expensive, black-box, global optimization problems that may have continuous, mixed-integer, or pure integer variables. Due to the black-box nature of the objective function, derivatives are not available. Hence, surrogate models are used as computationally cheap approximations of the expensive objective function in order to guide the search for improved solutions. Due to the computational expense of doing a single function evaluation, the goal is to find optimal solutions within very few expensive evaluations. The multimodality of the expensive black-box function requires an algorithm that is able to search locally as well as globally. MATSuMoTo is able to address these challenges. MATSuMoTo offers various choices for surrogate models and surrogate model mixtures, initial experimental design strategies, and sampling strategies. MATSuMoTo is able to do several function evaluations in parallel by exploiting MATLAB's Parallel Computing Toolbox.Comment: 13 pages, 7 figure

    An Efficient Algorithm for Automatic Structure Optimization in X-ray Standing-Wave Experiments

    Full text link
    X-ray standing-wave photoemission experiments involving multilayered samples are emerging as unique probes of the buried interfaces that are ubiquitous in current device and materials research. Such data require for their analysis a structure optimization process comparing experiment to theory that is not straightforward. In this work, we present a new computer program for optimizing the analysis of standing-wave data, called SWOPT, that automates this trial-and-error optimization process. The program includes an algorithm that has been developed for computationally expensive problems: so-called black-box simulation optimizations. It also includes a more efficient version of the Yang X-ray Optics Program (YXRO) [Yang, S.-H., Gray, A.X., Kaiser, A.M., Mun, B.S., Sell, B.C., Kortright, J.B., Fadley, C.S., J. Appl. Phys. 113, 1 (2013)] which is about an order of magnitude faster than the original version. Human interaction is not required during optimization. We tested our optimization algorithm on real and hypothetical problems and show that it finds better solutions significantly faster than a random search approach. The total optimization time ranges, depending on the sample structure, from minutes to a few hours on a modern laptop computer, and can be up to 100x faster than a corresponding manual optimization. These speeds make the SWOPT program a valuable tool for realtime analyses of data during synchrotron experiments

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type
    corecore