7,307 research outputs found

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process

    Kernel arquitecture for CAD/CAM in shipbuilding enviroments

    Get PDF
    The capabilities of complex software products such as CAD/CAM systems are strongly supported by basic information technologies related with data management, visualization, communication, geometry modeling and others related with the development process. These basic information technologies are involved in a continuous evolution process, but over recent years this evolution has been dramatic. The main reason for this has been that new hardware capabilities (including graphic cards) are available at very low cost, but also a contributing factor has been the evolution of the prices of basic software. To take advantage of these new features, the existing CAD/CAM systems must undergo a complete and drastic redesign. This process is complicated but strategic for the future evolution of a system. There are several examples in the market of how a bad decision has lead to a cul-de-sac (both technically and commercially). This paper describes what the authors consider are the basic architectural components of a kernel for a CAD/CAM system oriented to shipbuilding. The proposed solution is a combination of in-house developed frameworks together with commercial products that are accepted as standard components. The proportion of in-house frameworks within this combination of products is a key factor, especially when considering CAD/CAM systems oriented to shipbuilding. General-purpose CAD/CAM systems are mainly oriented to the mechanical CAD market. For this reason several basic products exist devoted to geometry modelling in this context. But these basic products are not well suited to deal with the very specific geometry modelling requirements of a CAD/CAM system oriented to shipbuilding. The complexity of the ship model, the different model requirements through its short and changing life cycle and the many different disciplines involved in the process are reasons for this inadequacy. Apart from these basic frameworks, specific shipbuilding frameworks are also required. This second layer is built over the basic technology components mentioned above. This paper describes in detail the technological frameworks which have been used to develop the latest FORAN version.Postprint (published version

    VIRTUE : integrating CFD ship design

    Get PDF
    Novel ship concepts, increasing size and speed, and strong competition in the global maritime market require that a ship's hydrodynamic performance be studied at the highest level of sophistication. All hydrodynamic aspects need to be considered so as to optimize trade-offs between resistance, propulsion (and cavitation), seakeeping or manoeuvring. VIRTUE takes a holistic approach to hydrodynamic design and focuses on integrating advanced CFD tools in a software platform that can control and launch multi-objective hydrodynamic design projects. In this paper current practice, future requirements and a potential software integration platform are presented. The necessity of parametric modelling as a means of effectively generating and efficiently varying geometry, and the added-value of advanced visualization, is discussed. An illustrating example is given as a test case, a container carrier investigation, and the requirements and a proposed architecture for the platform are outlined

    Key Challenges and Opportunities in Hull Form Design Optimisation for Marine and Offshore Applications

    Get PDF
    New environmental regulations and volatile fuel prices have resulted in an ever-increasing need for reduction in carbon emission and fuel consumption. Designs of marine and offshore vessels are more demanding with complex operating requirements and oil and gas exploration venturing into deeper waters and hasher environments. Combinations of these factors have led to the need to optimise the design of the hull for the marine and offshore industry. The contribution of this paper is threefold. Firstly, the paper provides a comprehensive review of the state-ofthe- art techniques in hull form design. Specifically, it analyses geometry modelling, shape transformation, optimisation and performance evaluation. Strengths and weaknesses of existing solutions are also discussed. Secondly, key challenges of hull form optimisation specific to the design of marine and offshore vessels are identified and analysed. Thirdly, future trends in performing hull form design optimisation are investigated and possible solutions proposed. A case study on the design optimisation of bulbous bow for passenger ferry vessel to reduce wavemaking resistance is presented using NAPA software. Lastly, main issues and challenges are discussed to stimulate further ideas on future developments in this area, including the use of parallel computing and machine intelligence

    Concept design of a fast sail assisted feeder container ship

    No full text
    An environmentally sustainable fast sail-assisted feeder-container ship concept, with a maximum speed of 25 knots, has been developed for the 2020 South East Asian and Caribbean container markets. The use of low-carbon and zero-sulphur fuel (liquefied natural gas) and improvements in operational efficiency (cargo handling and scheduling) mean predicted Green house gas emissions should fall by 42% and 40% in the two selected operational regions. The adoption of a Multi-wing sail system reduces power requirement by up to 6% at the lower ship speed of 15 knots. The predicted daily cost savings are respectively 27% and 33% in South East Asian and the Caribbean regions.Two hull forms with a cargo capacity of 1270TEU utilising different propulsion combinations were initially developed to meet operational requirements. Analysis & tank testing of different hydrodynamic phenomena has enabled identification of efficiency gains for each design. The final propulsion chosen is a contra-rotating podded drive arrangement. Wind tunnel testing improved Multi-wing sail performance by investigating wing spacing, wing stagger and sail-container interactions. The associated lift coefficient was increased by 32%. Whilst savings in sail-assisted power requirement are lower than initially predicted an unexpected identified benefit was motion damping.The fast feeder-container ship is a proposed as a viable future method of container transhipment

    Development Of A Semi-Swath Craft For Malaysian Waters

    Get PDF
    Small Waterplane Area Twin Hull (SWATH) and Catamaran vessels are known to have more stable platform as compared to mono-hulls. A further advantage of SWATH as compared to Catamaran is its smaller waterplane area that provides better seakeeping qualities. However, the significant drawback of the SWATH vessel is when encountering head-sea at high forward speed. Due to its low stiffness, it has a tendency for large pitch motions. Consequently, this may lead to excessive trim or even deck wetness. This phenomenon will not only degrade the comfortability but also results in structural damage with greater safety risks. In this research a modified SWATH design is proposed. The proposed design concept represents a combination of Catamaran and SWATH vessel hull features that will lead to reduce in bow-diving but still maintains good seakeeping capabilities. This is then called the Semi- SWATH vessel. In addition, the full-design of this vessel has been equipped by fixed fore fins and controllable aft fins attached on each lower hull. In the development of controllable aft fins, the PID controller system was applied to obtain an optimal vesselñ€ℱs ride performance at speeds of 15 (medium) and 20 (high) knots. In this research work, the seakeeping performance of Semi-SWATH vessel was evaluated using time-domain simulation approach. The effect of fin stabilizer on the bare hull performance is considered. The validity of numerical evaluation was then compared with model experiments carried out in the Towing Tank at Marine Technology Laboratory, UTM. It is shown that the Semi-SWATH vessel with controllable fin stabilizer can have significantly reduction by about 42.57% of heave motion and 48.80% of pitch motion
    • 

    corecore