10,109 research outputs found

    マルチ スケール キノウ ヲ ユウスル コウソク ジドウ マイクロ マニピュレーション システム

    Full text link
    Ebubekir Avci, Chanh-Nghiem Nguyen, Kenichi Ohara, Yasushi Mae, Tatsuo Arai, Analysis and suppression of residual vibration in microhand for high-speed single-cell manipulation, International Journal of Mechatronics and Automation, 2013-Vol.3, No.2, pp.110-11

    Towards a universal end effector : the design and development of production technology's intelligent robot hand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Engineering and Automation at Massey University

    Get PDF
    Research into robot hands for industrial use began in the early 1980s and there are now many examples of robot hands in existence. The reason for research into robot hands is that standard robot end effectors have to be designed for each application and are therefore costly. A universal end effector is needed that will be able to perform any parts handling operation or use other tools for other industrial operations. Existing robot hand research would therefore benefit from new concepts, designs and control systems. The Department of Production Technology is developing an intelligent robot hand of a novel configuration, with the ultimate aim of producing a universal end effector. The concept of PTIRH (Production Technology's Intelligent Robot Hand) is that it is a multi-fingered manipulator with a configuration of two thumbs and two fingers. Research by the author for this thesis concentrated on five major areas. First, the background research into the state of the art in robot hand research. Second, the initiation, development and analysis of the novel configuration concept of PTIRH. Third, specification, testing and analysis of air muscle actuation, including design, development and testing of a servo pneumatic control valve for the air muscles. Fourth, choice of sensors for the robot hand, including testing and analysis of two custom made air pressure sensors. Fifth, definition, design, construction, development, testing and analysis of the mechanical structure for an early prototype of PTIRH. Development of an intelligent controller for PTIRH was outside the scope of the author's research. The results of the analysis on the air muscles showed that they could be a suitable direct drive actuator for an intelligent robotic hand. The force, pressure and position sensor results indicate that the sensors could form the basis of the feedback loop for an intelligent controller. The configuration of PTIRH enables it to grasp objects with little reliance on friction. This was demonstrated with an early prototype of the robot hand, which had one finger with actuation and three other static digits, by successfully manually arranging the digits into stable grasps of various objects

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    Tools development to optimize the use of micro-drones for architectural cultural heritage survey

    Get PDF
    In view of the increasingly widespread use of inoffensive UAS for photogrammetric acquisitions in the architectural and infrastructural spheres, there is a need to be able to program flight missions suited to the operator’s needs. This contribution presents the results of two experiments conducted by the research group. The first proposed procedure, based on low-cost instrumentation and algorithms in a VPL environment, fills the gap of proprietary applications and allows the coding and customisation of flight missions for photogrammetry. Obtaining this information is not always easy; immovable or unforeseen obstacles lead to lengthy post-production of the photogrammetric cloud to remove them. The second procedure, by constructing an object segmentation framework, fills this gap by automatically processing photogrammetric images by recreating masks that remove unwanted objects from the dense cloud calculation. Despite some shortcomings, the results are promising and manage to make up for these shortcomings, at least in part
    corecore